

Report on Detailed Site Investigation

Residential Aged Care Facility Lang Road, Marsh Parade and Hume Highway, Casula

> Prepared for Catholic Healthcare Limited

> > Project 85600.00 March 2017

Douglas Partners Geotechnics | Environment | Groundwater

Document History

Document details

Project No.	85600.00	Document No.	R.002.Rev2	
Document title	Report on Detailed Site Investigation			
Residential Aged Care Facility				
Site address	ddress Lang Road, Marsh Parade and Hume Highway, Casula			
Report prepared for Catholic Healthcare Limited				
File name 85600.00.R.002.Rev2.DSI				

Document status and review

Prepared by	Reviewed by	Date issued
David Holden	Tim Wright	22 February 2017
David Holden	Tim Wright	23 February 2017
David Holden	Tim Wright	28 February 2017
	David Holden	David Holden Tim Wright

Distribution of copies

Status	Electronic	Paper	Issued to	
0	1	0	Catholic Healthcare Limited c/- Cyre Projects Pty Ltd	
1	1	0	Catholic Healthcare Limited c/- Cyre Projects Pty Ltd	
2	1	0	Catholic Healthcare Limited c/- Cyre Projects Pty Ltd	

The undersigned, on behalf of Douglas Partners Pty Ltd, confirm that this document and all attached drawings, logs and test results have been checked and reviewed for errors, omissions and inaccuracies.

Signature	Date
Author Dawrigh	28 February 2017
Reviewer +12	28 February 2017

Douglas Partners Pty Ltd ABN 75 053 980 117 www.douglaspartners.com.au 96 Hermitage Road West Ryde NSW 2114 PO Box 472 West Ryde NSW 1685 Phone (02) 9809 0666 Fax (02) 9809 4095

Table of Contents

Page

1.	Introc	luction	1
2.	Scop	e of Works	1
3.	Site I	dentification and Description	2
	3.1	Site Identification	2
	3.2	Site Description	3
	3.3	Proposed Development	3
4.	Regio	onal Geology, Hydrology and Topography	3
5.	Revie	ew of Previous Reports	4
	5.1	EIS 2016	4
	5.2	DP (2016) - HAZMAT	5
6.	Conc	eptual Site Model	5
	6.1	Potential Sources	5
	6.2	Potential Receptors	6
	6.3	Potential Pathways	6
	6.4	Summary of CSM	7
7.	Data	Quality Objectives	9
	7.1	The Data Quality Objectives and Project Quality Procedures	9
	7.2	Data Quality Indicators	9
	7.3	Fieldwork Methods	9
	7.4	Field Quality Assurance and Quality Control	9
	7.5	Laboratory QA/QC	10
	7.6	Sample Location and Rationale	10
	7.7	Soil Sampling Procedure	10
	7.8	Analytical Rationale	11
8.	Site A	Assessment Criteria	11
	8.1	Health Investigation and Screening Levels	12
	8.2	Ecological Investigation Levels	14
	8.3	Ecological Screening Levels – Petroleum Hydrocarbons	15
	8.4	Management Limits – Petroleum Hydrocarbons	16
	8.5	Asbestos in Soil	17
	8.6	Waste Classification Criteria	17
9.	Resu	lts	18

	9.1	Field	.18
	9.2	Laboratory Results	18
10.	Discu	ussion and Conclusion	.19
11.	Limit	ations	.20

Appendix A:	Drawings and Notes About this Report
Appendix B:	Site Photographs
Appendix C:	QA/QC
Appendix D:	Test Bore Log Results and Descriptive Notes
Appendix E:	Table E1: Summary of Soil Laboratory Results
	Laboratory Certificates

Report on Detailed Site Investigation Residential Aged Care Facility Lang Road, Marsh Parade and Hume Highway, Casula

1. Introduction

This report prepared by Douglas Partners Pty Ltd (DP) presents the results of a detailed site investigation (DSI) undertaken for the residential aged care facility at Lang Road, Marsh Parade and Hume Highway, Casula (the site). The site location is shown on Drawing 1, Appendix A. The investigation was commissioned by Catholic Healthcare Limited and was undertaken in accordance with DP's proposal (SYD160682) dated 1 June 2016.

The objective of the current DSI is to evaluate whether the site is suitable from a site contamination perspective for the proposed development. The investigation included the review of previous reports, drilling of nineteen test bores, laboratory testing of selected samples and development of a conceptual site model (CSM).

The following previous investigations on the site undertaken by DP and others were reviewed as part of the assessment:

- Environmental Investigation Services Pty Ltd, 'Preliminary Stage 1 Environmental Site Assessment for Proposed Aged Care Development, 11 Lang Road, 76, 78, 80, Marsh Parade, and 536, 538, 540 & 542 Hume Highway, Casula NSW', ref: E29358Krpt, April 2016 (EIS, 2016); and
- Douglas Partners Pty Ltd, 'Pre-demolition Hazardous Building Materials Report, Proposed Aged Care and Seniors Living Facility, Lang Road, Marsh Parade and Hume Highway, Casula', ref: 85600.P001, September 2016 (DP, 2016).

The DSI has been conducted in general accordance with the National Environment Protection Council (NEPC) National Environment Protection (Assessment of Site Contamination) Measure 1999 (amended 2013, NEPC 2013) and the NSW Office of Environment and Heritage Contaminated Sites: Guidelines for Reporting on Contaminated Sites 2011 (reprint).

It is noted that this assessment was undertaken concurrently with DP's geotechnical assessment which has been reported separately.

2. Scope of Works

The scope of works for the DSI is as follows:

- Review of the EIS (2016) and DP (2016) reports;
- Undertake a Dial-Before-You-Dig search and review service plans provided by the Client;

- Undertake a site walkover to set out test bores and scan proposed locations using an electromagnetic scanner;
- Auger 19 test bores to 0.5 m into natural or prior refusal (whichever was the lesser) using a bobcat with solid flight augur attachment and hand tools;
- Logging of each test bore by a DP engineer/scientist;
- Collection of soil samples from each test bore at regular intervals and where signs of contamination were observed;
- Analysis of 25 selected soil samples and one material sample (plus QA/QC analysis) at a NATA accredited laboratory for various combinations of the following contaminants of potential concern and parameters:
 - o Metals (As, Cd, Cr, Cu, Pb, Hg, Ni, Zn);
 - Total recoverable hydrocarbons (TRH) (a screening test for total petroleum hydrocarbons TPH);
 - o Monocyclic aromatic hydrocarbons (benzene, toluene, ethylbenzene and xylene BTEX);
 - o Polycyclic aromatic hydrocarbons (PAH);
 - o Organochlorine pesticides (OCP);
 - o Organophosphate pesticides (OPP);
 - o Polychlorinated biphenyls (PCB);
 - o Phenols;
 - o Asbestos (40 g sample for initial screening purposes);
 - o pH;
 - o Electrical conductivity;
 - o Cation exchange capacity (CEC); and
 - o TCLP (for waste classification).
- This DSI report detailing the methodology and results of the assessment. The report also
 includes a preliminary waste classification (and VENM assessment) for the soils to assist with
 project planning.

3. Site Identification and Description

3.1 Site Identification

The street address for the site covers 11, 13 and 15 Lang Road, 76, 78 and 80 Marsh Parade and 536, 538, 540 and 542 Hume Highway, Casula. The site is irregularly shaped and covers a surveyed area of 8,564 m^2 . The site is located within the local government authority of the Liverpool City Council.

A site plan depicting the site boundary and locality map is included as Drawing 1, Appendix A.

3.2 Site Description

A site walkover of the 10 properties that form the site was undertaken by a DP environmental scientist on 23 January 2017 as part of this DSI. The observations from this walkover are noted below with photographs provided in Appendix B. Some of the properties were still occupied at the time of the walkover.

The site was occupied by numerous low density residential buildings with sheds/garages present in all properties. 542 Hume Highway located on the corner of the site has a swimming pool in the backyard, whilst the area at the rear of 536 Hume Highway was grassed area partially overgrown with vegetation, in particular in the eastern section of this property. The site was relatively level with no significant filling apparent.

Bonded fibrous fragments (assumed to contain asbestos) were observed around the perimeters and below some buildings. Potential asbestos-containing materials were not observed on the ground surfaces away from the buildings during the site walkover. However, it is noted that thick grass coverage was present across significant portions of the site which may have precluded/restricted the observations of such materials at the surface in these areas. General rubbish and fragments of anthropogenic material (plastic, metal, tile and cloth) were observed on the surface. Other features and items observed included, but not limited to, garden beds and associated gardening equipment, chairs, empty metal drum, pool pump, roof tiles, rubbish bins, beer kegs, plastic buckets.

The site is bounded by Marsh parade in the north, Hume Highway to the west, Lang Road to the south and residential properties to the east. The site is located in a primarily residential area with some commercial and light industrial land use present approximately 65 m away to the east. Several vacant lots are present to the south and south-east.

3.3 Proposed Development

The proposed residential aged care facility development comprises the construction of two to three storey buildings with partial basement parking on the northern half of the site. Buildings will be surrounded by a mixture of hard landscaping (paving, driveways etc) and soft landscaping (turf, garden beds etc).

Architectural plans for the development are provided in Appendix A.

4. Regional Geology, Hydrology and Topography

Reference to the Penrith 1:100 000 Series Geological Sheet (9030) indicates the site is underlain by Bringelly Shale. Bringelly Shale typically comprises shale, carbonaceous claystone, claystone, laminite, fine to medium grained lithic sandstone, rare coal and tuff.

Reference to the Penrith 1:100,000 Soils Landscape Map of Sydney indicates that the majority of the site is situated on the Residual Blacktown Landscape and the south eastern corner is situated on the Erosional Luddenham Landscape. The Residual Blacktown Landscape is typified by gentle undulating

rises on Wianamatta Group and Hawkesbury Shales with broad rounded crests and ridges with gently inclined slopes, whilst the Erosional Luddenham Landscape is characterised by undulating to rolling low hills on Wianamatta Group shales, often associated with Minchinbury Sandstone.

According to NSW Acid Sulphate Soil Risk mapping (1994-1998) the site is not located within or close to an area with a risk for acid sulphate soils.

The nearest water course to the site is the Georges River, located approximately 500 m to the east. The Georges River flows in an approximately north to south direction towards Botany Bay. It is anticipated that groundwater would flow toward the Georges River.

The site has a gradual fall towards the north.

5. Review of Previous Reports

5.1 EIS 2016

EIS (2016) comprised a review of desktop information and site walkover. It is noted that 13 and 15 Lang Road were not part of the assessment.

In summary EIS concluded that:

- A review of site history indicated:
 - o The aerial photographs indicate that the site has comprised residential structures since prior to 1955 to the present;
 - o The historical land title records indicate that the site was owned by numerous companies including Liverpool Golf Club;
 - o The historical land title records indicate that the site was owned by a farmer and a mechanic; and
 - o NSW EPA records did not indicate any notices for the site.
- The Preliminary Site Conceptual Model (PSCM) identified the following areas of concern (AEC):
 - Fill material The site may have been historically filled to achieve existing levels. The fill may have been imported from various sources and can contain elevated concentrations of contaminants;
 - Use of pesticides The site has potentially been used for agricultural purposes between 1926 and 1958. The use of pesticides during this period could have resulted in potential contamination; and
 - Hazardous building materials The buildings on the site have been constructed prior to the 1990's. Hazardous building materials were used for construction purposes during this period. The hazardous building materials can pose a potential contamination source during demolition/development.

EIS assessed the risk of contamination at the site to be moderate based on the AEC identified in the PSCM and consequently recommended that the site could be made suitable for the proposed residential age care facility provided that the following additional works take place:

- Undertake a Stage 2 Environmental Site Assessment to meet the sampling density outlined in the NSW EPA *Contaminated Site Sampling Design Guidelines* (1995);
- Undertake a waste classification assessment for the off-site disposal of material excavated for the proposed development; and
- Undertake a Hazardous Materials Assessment (Hazmat) for the existing buildings prior to the commencement of demolition work.

It is noted that this report and DP (2016) have been undertaken to address the above recommendations.

5.2 DP (2016) - HAZMAT

DP (2016) comprised a hazardous building materials survey of the existing structures. The report identified the presence of hazardous materials on all properties within the site. These included:

- Asbestos;
- Lead dust;
- Lead paint;
- PCB; and
- Synthetic mineral fibres (SMF).

Appropriate management and removal of these hazardous building materials is required during the demolition process for site structures.

6. Conceptual Site Model

A CSM is a representation of site-related information regarding contamination sources, receptors and exposure pathways between those sources and receptors. The CSM provides the framework for identifying how the site became contaminated and how potential receptors may be exposed to contamination either in the present or the future i.e. it enables an assessment of the potential source – pathway – receptor linkages (complete pathways).

The CSM is presented below is an updated version of the Preliminary CSM presented in EIS (2016).

6.1 Potential Sources

Based on the current investigation, the following potential sources of contamination and associated contaminants of potential concern (COPC) have been identified.

S1 – Imported filling: Importation of filling from unknown sources to achieve existing site levels. It is noted that based on site walkover on site previous levelling/filling at the site is not expected to be significant.

COPC include: metals, TRH, BTEX, PAH, PCB, OCP, OPP, phenols, and asbestos.

S2 – Use of pesticides: The site has potentially been used for agricultural purposes between 1926 and 1958. The use of pesticides during this period could have resulted in potential contamination.

COPC include: metals, OCP and OPP.

S3 – Hazardous building materials: The buildings have been identified to include hazardous materials (DP, 2016). These materials pose a potential contamination risk during demolition/redevelopment.

COPC include: asbestos, lead, SMF and PCB.

6.2 Potential Receptors

Human Health Receptors:

- R1 Construction and maintenance workers;
- R2 Site users (current and end users residential and aged care); and
- R3 Adjacent users (residential).

Environmental Receptors:

- R4 Surface water (Georges River);
- R5 Groundwater (freshwater); and
- R6 Terrestrial ecology.

6.3 Potential Pathways

- P1 Ingestion and dermal contact;
- P2 Inhalation of dust and/or vapours;
- P3 Leaching of contaminants and vertical migration into groundwater;
- P4 Lateral migration of groundwater providing base flow to water bodies; and
- P5 Contact with terrestrial ecology.

Given the distance to the nearest water body (Georges River) and the developed nature of the surrounding area, surface water run-off to a receiving water body from the site was not considered to be of concern.

6.4 Summary of CSM

A 'source–pathway–receptor' approach has been used to assess the potential risks of harm being caused to the identified receptors from contamination sources on or in the vicinity of the site, via exposure pathways (complete pathways). The possible pathways between the above sources (S1 to S3) and receptors (R1 to R6) are provided in Table 2 below.

Table 2: Potential Complete Pathways

Source	Transport Pathway	Receptor	Risk Management Action Recommended
S1: Imported Filling Metals, TRH, BTEX, PAH, PCB, OPP, OCP, phenols and asbestos S2: Use of pesticides,	P1: Ingestion and dermal contact P2: Inhalation of dust and/or vapours	 R1: Construction and maintenance workers R2: Site users (residential and commercial) R1: Construction and maintenance workers R2: Site users (residential and aged care) R3: Adjacent users (residential) 	An intrusive investigation undertaken to investigate potential contamination on-site (this DSI). Based on the site history and preliminary conceptual site model which indicated generally low level for chemical contamination, investigation of groundwater was not considered warranted unless chemical contamination is identified in the soils as part of the intrusive
Metals, OPP and OCP	 P3 – Leaching of contaminants and vertical migration into groundwater P4: Lateral migration of groundwater providing base flow to water bodies 	R5: Groundwater (freshwater) R4: Surface water (Georges River)	investigation.
	P5: Contact with terrestrial ecology	R6 – Terrestrial ecology	
S4: Existing buildings COPC: Asbestos, lead, SMF and PCB	P1: Ingestion and dermal contact P2: Inhalation of dust and/or vapours	R1: Construction and maintenance workers R2: Site users (residential and commercial)	HAZMAT assessment undertaken as outlined in DP (2016). Appropriate management and disposal of hazardous material during demolition works. Inspection of site post demolition works.

7. Data Quality Objectives

7.1 The Data Quality Objectives and Project Quality Procedures

The DSI has been devised broadly in accordance with the seven step data quality objective (DQO) process which is provided in Appendix B, Schedule B2 of NEPC (2013). The DQO process is outlined as follows:

- Stating the Problem;
- Identifying the Decision;
- Identifying Inputs to the Decision;
- Defining the Boundary of the Assessment;
- Developing a Decision Rule;
- Specifying Acceptable Limits on Decision Errors; and
- Optimising the Design for Obtaining Data.

Referenced sections for the respective DQOs listed above are presented in Table Q1, Appendix C.

7.2 Data Quality Indicators

The performance of the assessment in achieving the DQO was assessed through the application of Data Quality Indicators (DQI), defined as follows:

Precision:	A quantitative measure of the variability (or reproducibility) of data;		
Accuracy:	A quantitative measure of the closeness of reported data to the "true" value;		
Representativeness:	The confidence (expressed qualitatively) that data are representative of each media present on the site;		
Completeness:	A measure of the amount of useable data from a data collection activity; and		
Comparability:	mparability : The confidence (expressed qualitatively) that data can be considered equivalent for each sampling and analytical event.		

Further comments on the DQIs are presented in Appendix C.

7.3 Fieldwork Methods

Eleven of the test bores, which were also undertaken for DP's geotechnical assessment, were drilled using a bobcat drill rig with augur attachment. The remaining eight bores were augured using hand tools.

The depths of each bore and drilling methods are shown on the test bore logs provided in Appendix D. The work was undertaken on 23 and 34 January 2017.

7.4 Field Quality Assurance and Quality Control

The field QC procedures for sampling were as prescribed in Douglas Partners' *Field Procedures Manual*, and are outlined later in this section.

Field replicates were recovered and analysed for a limited suite of contaminants by means of intralaboratory analysis.

7.5 Laboratory QA/QC

The analytical laboratories, accredited by NATA, are required to conduct in-house QA/QC procedures. These are normally incorporated into every analytical run and include reagent blanks, spike recovery, surrogate recovery and duplicate samples. These results are included in the laboratory certificates in Appendix E.

The results of the DP assessment of laboratory QA/QC are shown in Appendix C with the full laboratory certificates of analysis included in Appendix E.

7.6 Sample Location and Rationale

The recommended minimum sampling density as stipulated in the NSW EPA's *Contaminated Sites: Sampling Design Guideline, 199*5 for a 8,564 m² ha site is between 19 and 20 sampling points. One test bore location had to be abandoned due to access limitations, therefore 19 test bores were drilled. Based on the generally low potential for contamination associated with the former and current site uses it is considered that the general site coverage achieved is suitable for this DSI.

The test bore locations are shown on Drawing 1, Appendix A.

7.7 Soil Sampling Procedure

All sample locations were cleared for services and underground pipes by a services locator and by review of dial-before-you-dig (DBYD) plans.

All sampling data was recorded on DP's test bore logs with essential information included in the chainof-custody sheets. The general sampling procedure adopted for the collection of environmental samples is summarised below:

- Collection of soil samples directly from the SPT tube and auger using disposable sampling equipment;
- Collection of 10% replicate samples for QA/QC purposes;
- Transfer of samples into laboratory-prepared glass jars, filled to the top to minimise the headspace within the sample jar and capping immediately to minimise loss of volatiles. Replicate samples were placed into snap lock plastic bags for asbestos analysis;
- Labelling of sample containers with individual and unique identification, including project number, sample location and sample depth;

- Placement of the glass jars, with Teflon lined lid, into an ice cooled, insulated and sealed container for transport to the laboratory; and
- Chain of custody documentation was maintained at all times and countersigned by the receiving laboratory on transfer of samples.

7.8 Analytical Rationale

The analytical scheme was designed to obtain an indication of the potential presence and possible distribution of contaminants that may be attributable to past and present activities and features within the site, as discussed in Section 6.

Envirolab Services Pty Ltd (Envirolab) was used for the primary analysis of soil samples. Envirolab is required to carry out routine in-house QC procedures. Laboratory analytical methods are provided in the laboratory certificates of analysis in Appendix E and are summarised in the QA/QC section in Appendix C.

8. Site Assessment Criteria

The proposed development for the site is a residential aged care facility which it is considered would result in limited exposure to soils for site users. Nevertheless, taking into account the presence of soft landscaping areas and adopting a conservative approach, a low density residential land use setting has been adopted in determining the SAC.

The SAC applied in the current investigation are informed by the CSM which identified human and environmental receptors to potential contamination on the site (Section 6). Soil analytical results were assessed (as a Tier 1 assessment) against the SAC comprising the investigation and screening levels of Schedule B1, *National Environment Protection (Assessment of Site Contamination) Measure* 1999, as amended 2013 (NEPC, 2013). NEPC (2013) is endorsed by the NSW EPA under the CLM Act 1997. Petroleum based health screening levels for direct contact have been adopted from the *Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE) Technical Report no.10 Health screening levels for petroleum hydrocarbons in soil and groundwater (2011) as referenced by NEPC (2013).*

The investigation and screening levels are applicable to generic land use settings and include consideration of, where relevant, the soil type and the depth of contamination. The investigation and screening levels are not intended to be used as clean up levels. Rather, they establish concentrations above which further appropriate investigation (e.g. Tier 2 assessment) should be undertaken. They are intentionally conservative and are based on a reasonable worst-case scenario.

8.1 Health Investigation and Screening Levels

The Health Investigation Levels (HIL) and Health Screening Levels (HSL) are scientifically-based, generic assessment criteria designed to be used in the first stage (Tier 1) of an assessment of potential human health risk from chronic exposure to contaminants.

HILs are applicable to assessing health risk arising via all relevant pathways of exposure for a range of metals and organic substances. The HIL are generic to all soil types and apply generally to a depth of 3 m below the surface for residential use. Site-specific conditions may determine the depth to which HILs apply for other land uses.

HSLs are applicable to selected petroleum compounds and fractions to assess the risk to human health via inhalation and direct contact pathways. HSLs have been developed for different land uses, soil types and depths to contamination.

The generic HIL and HSL are considered to be appropriate for the assessment of contamination at the site. As discussed above, given the proposed development conservative criteria have been adopted (i.e. low density residential land use). The adopted HIL and HSL are:

- HIL-A Residential with opportunities for soil access;
- HSL-A & B Low high density residential (for vapour intrusion); and
- **HSL-A** Residential (low-density) (for direct contact).

It is noted that health screening levels for intrusive maintenance workers are listed in CRC CARE (2011), however, these have not be used as SAC for the current investigation as the screening levels are higher than HSL-A and therefore are considered unlikely to be risk drivers for further assessment.

The HSL adopted are predicated on the inputs summarised in Table 3.

Variable	Input	Rationale
Potential exposure pathway	Soil vapour intrusion (inhalation) / Direct contact *	Both potential exposure pathways identified in the CSM. It is noted that direct contact HSLs are generally not the risk drivers for further site assessment for the same contamination source as the HSLs for vapour intrusion (NEPC, 2013).
Soil Type	Silt	Clay/silt filling or silty clay filling types were recorded at the site. Silt was adopted as the more conservative of the two.
Depth to contamination	0 m to <1 m	Filling comprising clay and silt was present within the top 1 m at the site.

Table 3: Inputs to the Derivation of HSLs

* Developed by CRC CARE (2011)

The adopted soil HIL and HSL for the potential contaminants of concern are presented in Table 4.

	Contaminants	HIL- A & HSL- A Direct Contact	HSL-A & HSL-B Vapour Intrusion
	Arsenic	100	-
	Cadmium	20	-
	Chromium (VI)	100	-
Metals	Copper	6000	-
metals	Lead	300	-
	Mercury (inorganic)	40	-
	Nickel	400	-
	Zinc	7400	-
РАН	Benzo(a)pyrene TEQ ¹	3	-
ГАП	Naphthalene	1400 (HSL)	4
	Total PAH	300	-
	C6 – C10 (less BTEX) [F1]	4400 (HSL)	40
TRH	>C10-C16 (less Naphthalene) [F2]	3300 (HSL)	230
	>C16-C34 [F3]	4500 (HSL)	-
	>C34-C40 [F4]	6300 (HSL)	-
	Benzene	100 (HSL)	0.6
DTEV	Toluene	14 000 (HSL)	390
BTEX	Ethylbenzene	4500 (HSL)	NL
	Xylenes	12 000 (HSL)	95
Phenol	Pentachlorophenol (used as an initial screen)	100	-
	Aldrin + Dieldrin	6	-
	Chlordane	50	-
	DDT+DDE+DDD	240	-
005	Endosulfan	270	-
OCP	Endrin	10	-
	Heptachlor	6	-
	НСВ	10	-
	Methoxychlor	300	-
	PCB ²	1	-

Table 4: Health Investigation and Screening Levels (HIL and HSL) in mg/kg

Notes: 1 – sum of carcinogenic PAH 2 – non dioxin-like PCBs only

8.2 Ecological Investigation Levels

Given that it currently unclear if the development footprint, namely any basement car parking will cover the whole site envelope, Ecological Investigation Levels (EIL) have been derived for selected metals and organic compounds and are applicable for assessing risk to terrestrial ecosystems (NEPC, 2013). EIL depend on specific soil physiochemical properties and land use scenarios and generally apply to the top 2 m of soil, which corresponds to the root zone and habitation zone of many species. The EIL is determined for a contaminant based on the sum of the ambient background concentration (ABC) and an added contaminant limit (ACL). The ABC of a contaminant is the soil concentration in a specific locality that is the sum of naturally occurring background levels and the contaminants levels that have been introduced from diffuse or non-point sources (e.g. motor vehicle emissions). The ACL is the added concentration (above the ABC) of a contaminant above which further appropriate investigation and evaluation of the impact on ecological values is required.

The EIL is calculated using the following formula:

EIL = ABC + ACL,

The ABC is determined through direct measurement at an appropriate reference site (preferred) or through the use of methods defined by Olszowy et al *Trace element concentrations in soils from rural and urban areas of Australia*, Contaminated Sites monograph no. 4, South Australian Health Commission, Adelaide, Australia 1995 (Olszowy, 1995) or Hamon et al, *Geochemical indices allow estimation of heavy metal background concentrations in soils*, Global Biogeochemical Cycles, vol. 18, GB1014, (Hamon, 2004). ACL is based on the soil characteristics of pH, CEC and clay content.

EIL (and ACLs where appropriate) have been derived in NEPC (2013) for only a short list of contaminants comprising As, Cu, Cr (III), DDT, naphthalene, Ni, Pb and Zn. An *Interactive (Excel) Calculation Spreadsheet* may be used for calculating site-specific EIL for these contaminants, and has been provided in the ASC NEPM Toolbox available on the SCEW (Standing Council on Environment and Water) website (http://www.scew.gov.au/node/941).

The adopted EIL, derived from the Interactive (Excel) Calculation Spreadsheet are shown in the following Table 5.

The following assumptions have been used to determine the EILs:

- A protection level of 80% for urban residential areas and public open space has been adopted;
- The EILs will apply to the top 2 m of the soil profile which corresponds to the root zone and habitation zone of many species;
- Given the likely predominant source of soil contaminants (i.e. historical site uses / fill) the contamination is considered as "aged" (>2 years);
- ABCs have been derived using the *Interactive (Excel) Calculation Spreadsheet* using input parameters of NSW for the State in which the site is located, and low for traffic volumes; and
- Location specific pH and CEC values have been used as input parameters from four locations (BH1, BH7, BH11 and BH17). The average values obtained from these locations were pH 5.7 and CEC 12.5 cmol_c/kg, respectively.

		, , ,	
	Analyte		Comments
Metals	Arsenic	100	*Adopted pH of 5.7 and CEC of
	Copper*	170	12.5 cmol _o /kg;
	Nickel*	200	**A conservative assumed clay content of 10% was adopted.
	Chromium III**	410	
	Lead	1,100	
	Zinc*	390	
PAH	Naphthalene	170	
OCP	DDT	180	

Table 5: Ecological Investigation Levels (EIL) in mg/kg

8.3 Ecological Screening Levels – Petroleum Hydrocarbons

Ecological Screening Levels (ESL) are used to assess the risk of selected petroleum hydrocarbon compounds, BTEX and benzo(a)pyrene to terrestrial ecosystems. ESL apply to the top 2 m of the soil profile as for EIL.

ESL have been derived in NEPC (2013) for petroleum fractions F1 to F4 as well as BTEX and benzo(a)pyrene. Site specific data and assumptions as summarised in Table 6 have been used to determine the ESL. The adopted ESL, from Table 1B(6), Schedule B1 of NEPC (2013) are shown in Table 7.

Table 6:	Inputs t	to the	Derivation	of ESL
----------	----------	--------	------------	--------

Variable	Input	Rationale
Depth of ESL application	Top 2 m of the soil profile	The top 2 m depth below ground level corresponds to the root zone and habitation zone of many species.
Land use	Residential	Proposed development is for a residential aged care facility.
Soil Texture	Fine	Site soils include silt and clay in filling, therefore a fine soil texture has been adopted.

	Analyte	ESL	Comments
TRH	C6 – C10 (less BTEX) [F1]	180*	All ESLs are low
	>C10-C16 (less Naphthalene) [F2]	120*	reliability apart from those marked with *
	>C16-C34 [F3]	1300	which are moderate
	>C34-C40 [F4]	5600	reliability
BTEX	Benzene	65	
	Toluene	105	
	Ethylbenzene	125	
	Xylenes	45	
PAH	Benzo(a)pyrene	0.7	

Table 7: Ecological Screening Levels (ESL) in mg/kg

8.4 Management Limits – Petroleum Hydrocarbons

In addition to appropriate consideration and application of the HSL and ESL, there are additional considerations which reflect the nature and properties of petroleum hydrocarbons, including:

- Formation of observable light non-aqueous phase liquids (LNAPL);
- Fire and explosion hazards; and
- Effects on buried infrastructure e.g. penetration of, or damage to, in-ground services.

Management Limits to avoid or minimise these potential effects have been adopted in NEPC (2013) as interim Tier 1 guidance. Management Limits have been derived in NEPC (2013) for the same four petroleum fractions as the HSL (F1 to F4). The adopted Management Limits, from Table 1B(7), Schedule B1 of NEPC (2013) are shown in the following Table 8. The following site specific data and assumptions have been used to determine the Management Limits:

- The Management Limits will apply to any depth within the soil profile;
- The Management Limits for residential land uses apply; and
- Site soils include silts and clays in natural soils and filling. A "fine" soil texture has been adopted and is the most conservative texture for soil Management Limits.

Table 8:	Management	Limits	in mg/kg
----------	------------	--------	----------

Analyte		Management Limit
TRH	$C_6 - C_{10}$ (F1) [#]	800
	>C ₁₀ -C ₁₆ (F2) [#]	1000
	>C ₁₆ -C ₃₄ (F3)	3500
	>C ₃₄ -C ₄₀ (F4)	10,000

Separate management limits for BTEX and naphthalene are not available hence these have not been subtracted from the relevant fractions to obtain F1 and F2

8.5 Asbestos in Soil

Bonded asbestos-containing material (ACM) is the most common form of asbestos contamination across Australia, generally arising from:

- Inadequate removal and disposal practices during demolition of buildings containing asbestos products;
- Widespread dumping of asbestos products and asbestos containing fill on vacant land and development sites; and
- Commonly occurring in historical fill containing unsorted demolition materials.

Mining, manufacturing or distribution of asbestos products may result in sites being contaminated by friable asbestos including free fibres. Severe weathering or damage to bonded ACM may also result in the formation of friable asbestos comprising fibrous asbestos (FA) and/or asbestos fines (AF).

Asbestos only poses a risk to human health when asbestos fibres are made airborne and inhaled. If asbestos is bound in a matrix such as cement or resin, it is not readily made airborne except through substantial physical damage. Bonded ACM in sound condition represents a low human health risk, whilst both FA and AF materials have the potential to generate, or be associated with, free asbestos fibres. Consequently, FA and AF must be carefully managed to prevent the release of asbestos fibres into the air.

A detailed asbestos assessment on the buildings was undertaken as part of DP (2016). Noting that clearance of the site will be required post demolition works, for the purposes of this DSI the presence or absence of asbestos in soil, at a limit of reporting of 0.1 g/kg, has been adopted as an initial screen.

8.6 Waste Classification Criteria

To assess the waste classification of the material for off-site disposal purposes a preliminary waste classification assessment was undertaken in accordance with the six step process outlined in the NSW EPA *Waste Classification Guidelines 2014*. The soil results are assessed against the general solid waste (GSW) criteria outlined in Tables 1 and 2 of the guidelines.

With respect to the natural materials at the site, these are also assessed for their potential classification as Virgin Excavated Natural Material (VENM). In this regard the NSW EPA defines VENM as:

- "natural material (such as clay, gravel, sand, soil or rock fines):
- that has been excavated or quarried from areas that are not contaminated with manufactured chemicals, or process residues, as a result of industrial, commercial, mining or agricultural activities; and
- that does not contain any sulfidic ores or soils or any other waste; and
- includes excavated natural material that meets such criteria for virgin excavated natural material as may be approved for the time being pursuant to an EPA Gazettal notice."

For the purpose of providing screening criteria to compare laboratory results against for assessing VENM, DP have compared the results of the natural soils to published background concentrations in ANZECC/NHMRC (1992) Australian and New Zealand Guidelines for the Assessment and Management of Contaminated Sites, Environmental Soil Quality Guidelines Background A [ANZECC A]. In the case of organics where no reference values are provided the laboratory PQL has been adopted as the screening level.

9. Results

9.1 Field

The test bore logs are included in Appendix D and should be read in conjunction with the accompanying standard notes defining classification methods and descriptive terms.

The subsurface conditions are broadly summarised as follows:

- TOPSOIL Typically present in the top 0.2 m comprising brown and grey silt and silty clay with traces of rootlets, siltstone gravel and fine sand. A bonded ACM fragment was found in BH9;
- FILLING Brown and grey silty clay and silt with traces of ironstone gravel. Brick fragments were encountered in BH9, BH11, BH13 and BH14 whilst tile fragments were observed in BH10. Filling was observed to depths of between 0.1 m and 0.8 m bgl (BH8);
- NATURAL SOILS Red, brown and grey clay with varying silt composition and inclusions of ironstone gravel. The natural soils were encountered at depths of between 0.1 m and 0.8 m bgl; and
- BEDROCK Brown and grey siltstone was encountered in BH1 to BH8 at depths of between 2.7 m and 5.8 m bgl.

No signs of gross chemical contamination, such as odours or staining, were observed during the investigation, although an ACM fragment was observed in the filling (topsoil) at BH9.

No free groundwater was observed during the investigation.

9.2 Laboratory Results

The results of the soil laboratory analysis undertaken are summarised in Table E1: Summary of Soil Laboratory Results, in Appendix E.

The full laboratory certificates together with the chain of custody and sample receipt information are also presented in Appendix E.

10. Discussion and Conclusion

All chemical laboratory results for the site were within the adopted SAC and indicated low potential for contamination. The fragment of ACM from the near surface at BH9 confirmed the presence of chrysotile and amosite asbestos. Screening for asbestos in soil did not record asbestos concentrations above the laboratory reporting limit of 0.1 g/kg. It is considered likely that the ACM fragment found in BH9 is due to current and past structures on the site which are known to contain asbestos. In this regard, it should be noted that there is the potential for asbestos fragments to be present sporadically across the site, in particular around existing structures and within the near surface materials and hence appropriate management measures should be adopted to manage this during construction (e.g. appropriate demolition and clearance of structures, unexpected finds protocol, etc). The low chemical concentrations and the presence of bonded asbestos are considered to be consistent with the historical use of the site and the findings in DP's HAZMAT survey (DP, 2016).

With respect to the preliminary waste classification, the lead concentrations in four filling samples were at or above the CT1 criteria for general solid waste without TCLP analysis. Analysis for these samples for TCLP recorded low leaching characteristics and were within the general solid waste criteria with TCLP analysis.

All results from the natural soils were within the adopted background ranges.

Given this, the preliminary waste classification for the soils on the site is summarised as follows:

- Brown and grey silty clay and silt filling/topsoil with ironstone gravel and inclusions of rootlets, brick, tile is preliminarily classified as General Solid Waste (non-putrescible);
- The brown silt clay filling/topsoil with some gravel, and inclusions of rootlets and asbestos around BH9 and the existing structures is preliminarily classified as Special Waste (asbestos) General Solid Waste (non-putrescible); and
- The red brown and grey clay and silty clay natural soils with inclusions of ironstone, and the grey and brown siltstone and bedrock are preliminarily classified as Virgin Excavated Natural Material (VENM).

Based on the field and analytical results presented in this report it is considered the site can be made suitable for the proposed residential aged care facility development, subject to the implementation of the following:

- An unexpected finds protocol;
- Surface inspection, and if necessary sampling, following demolition of the existing structures and stripping of the grass coverage to assess the presence of asbestos in the filling material which is to be retained on the site; and
- Confirmation of the preliminary waste classifications, including delineation for the presence of asbestos around BH9.

11. Limitations

Douglas Partners (DP) has prepared this report for the project at Lang Road, Marsh Parade and Hume Highway, Casula in accordance with DP's proposal dated 1 June 2016 and acceptance received from Catholic Healthcare Ltd. The work was carried out under agreed contract between DP and Catholic Healthcare Ltd. This report is provided for the exclusive use of Catholic Healthcare Ltd for this project only and for the purposes as described in the report. It should not be used by or relied upon for other projects or purposes on the same or other site or by a third party. Any party so relying upon this report beyond its exclusive use and purpose as stated above, and without the express written consent of DP, does so entirely at its own risk and without recourse to DP for any loss or damage. In preparing this report DP has necessarily relied upon information provided by the client and/or their agents.

The results provided in the report are indicative of the sub-surface conditions on the site only at the specific sampling and/or testing locations, and then only to the depths investigated and at the time the work was carried out. Surface and sub-surface conditions can change abruptly due to variable geological processes and also as a result of human influences. Such changes may occur after DP's field testing has been completed.

DP's advice is based upon the conditions encountered during this investigation. The accuracy of the advice provided by DP in this report may be affected by undetected variations in ground conditions across the site between and beyond the sampling and/or testing locations. The advice may also be limited by budget constraints imposed by others or by site accessibility.

This report must be read in conjunction with all of the attached and should be kept in its entirety without separation of individual pages or sections. DP cannot be held responsible for interpretations or conclusions made by others unless they are supported by an expressed statement, interpretation, outcome or conclusion stated in this report.

This report, or sections from this report, should not be used as part of a specification for a project, without review and agreement by DP. This is because this report has been written as advice and opinion rather than instructions for construction.

The contents of this report do not constitute formal design components such as are required, by the Health and Safety Legislation and Regulations, to be included in a Safety Report specifying the hazards likely to be encountered during construction and the controls required to mitigate risk. This design process requires risk assessment to be undertaken, with such assessment being dependent upon factors relating to likelihood of occurrence and consequences of damage to property and to life. This, in turn, requires project data and analysis presently beyond the knowledge and project role respectively of DP. DP may be able, however, to assist the client in carrying out a risk assessment of potential hazards contained in the Comments section of this report, as an extension to the current scope of works, if so requested, and provided that suitable additional information is made available to DP. Any such risk assessment would, however, be necessarily restricted to the environmental components set out in this report and to their application by the project designers to project design, construction, maintenance and demolition.

Douglas Partners Pty Ltd

Appendix A

Drawings

About This Report

Douglas Partners	CLIENT: Catholic Healthcare Ltd				TITLE:	Bore Locations
Douglas Partners Geotechnics Environment Groundwater	OFFICE:	Sydney	DRAWN BY:	СВ		Residential Aged Care Facility
	SCALE:	As shown	DATE:	25 Feb 2017		Lang Road, Marsh Parade and Hume Highway, Casula

ıla

В

REVISION:

PRE-DA MEETING
ISSUED FOR INFORMATION

Date 25/11/16 01.12.16 08.12.16 12.01.17 19.01.17 25.01.17 02.02.17 15.02.17

North Point

IDA SUBMISSIONDN

- Civil Engineer / Structural Engineer **BONACCI GROUP**
- Phone +61 2 82478400 Address Level 6, 37 York Street, Sydney NSW 2000
- Electrical Engineer / Hydraulic Engineer / Mechanical Engineer
- DSC CONSULTING ENGINEERS Phone +61 2 94161177 57-59 Hill Street, Roseville, NSW 2069
- fred.pentecost@dsc.com.au
- Planning
- HIGGINS PLANNING PTY. LTD. Phone +61 2 99294044
- 305, Level 3, 26 Ridge street, North Sydney marian@higginsplanning.com.au
- Traffic Engineer

TTPA

Phone +61 2 94115660 Address 502, Level 5, 282 Victoria Ave, Chatswood NSW 2067 ross@ttpa.com.au

Catholic Healthcare Limited Suite 1, Level 5, 15 Talavera Road, Macquiare Park,NSW 2113. Phone +61 2 88762100

Group GSA Pty Ltd ABN 76 002 113 779 Level 7, 80 William St East Sydney NSW

Australia 2011 www.groupgsa.com

2 DA-3100

- T +612 9361 4144 F +612 9332 3458
- architecture interior design urban design landscape nom architect M. Sheldon 3990
- Project Title

CASULA AGED CARE

11 Lang Road,76,78 and 80 March Parade,536,538,540 and 540 Hume Hwy, Casula NSW 2170 Drawing Title

GROUND FLOOR PLAN RL 38.5

Project No	Drawing No	Approver	
Approved			
Verified	7	Checker	
Plotted and checked b	W	Designer	
Drawing Created (by)		Author	
Drawing Created (date	e)	12/01/17	
Scale		1 : 200	

∃ Amendments Issue Description

Description
PRE-DA MEETING
ISSUED FOR INFORMATION

Date 25/11/16 01.12.16 08.12.16 12.01.17 19.01.17 25.01.17 02.02.17 15.02.17

North Point

DA SUBMISSION

Civil Engineer / Structural Engineer

- **BONACCI GROUP** Phone +61 2 82478400 Address Level 6, 37 York Street, Sydney NSW 2000
- Electrical Engineer / Hydraulic Engineer / Mechanical Engineer
- DSC CONSULTING ENGINEERS Phone +61 2 94161177 57-59 Hill Street, Roseville, NSW 2069
- fred.pentecost@dsc.com.au
- Planning
- HIGGINS PLANNING PTY. LTD. Phone +61 2 99294044 305, Level 3, 26 Ridge street, North Sydney marian@higginsplanning.com.au
- Traffic Engineer

TTPA

Phone +61 2 94115660 Address 502, Level 5, 282 Victoria Ave, Chatswood NSW 2067 ross@ttpa.com.au

Catholic Healthcare Limited Suite 1, Level 5, 15 Talavera Road, Macquiare Park,NSW 2113. Phone +61 2 88762100

- Group GSA Pty Ltd ABN 76 002 113 779 Level 7, 80 William St East Sydney NSW
- Australia 2011 www.groupgsa.com
- T +612 9361 4144 F +612 9332 3458
- architecture interior design urban design landscape nom architect M. Sheldon 3990
- Project Title

CASULA AGED CARE

11 Lang Road,76,78 and 80 March Parade,536,538,540 and 540 Hume Hwy, Casula NSW 2170 Drawing Title

LEVEL 1 PLAN RL 42.5

Drawing Created (date) 12 Drawing Created (by) Plotted and checked by Do Verified C	8	' 4	16047
Drawing Created (date) 12 Drawing Created (by) Plotted and checked by Do Verified C	Issue		Project No
Drawing Created (date) 12 Drawing Created (by) Plotted and checked by Do	pprover		Approved
Drawing Created (date) 12 Drawing Created (by)	Checker		Verified
Drawing Created (date) 12	esigner	ecked by	Plotted and ch
	Author	ed (by)	Drawing Create
Scale	2/01/17	ed (date)	Drawing Create
Saala	1 : 200		Scale

☐ Amendments Issue Description

PRE-DA MEETING
ISSUED FOR INFORMATION

Date 25/11/16 01.12.16 08.12.16 12.01.17 19.01.17 25.01.17 02.02.17 15.02.17

DA SUBMISSION

Civil Engineer / Structural Engineer

- BONACCI GROUP Phone +61 2 82478400 Address Level 6, 37 York Street, Sydney NSW 2000
- Electrical Engineer / Hydraulic Engineer / Mechanical Engineer
- DSC CONSULTING ENGINEERS Phone +61 2 94161177 57-59 Hill Street, Roseville, NSW 2069 fred.pentecost@dsc.com.au
- Planning
- HIGGINS PLANNING PTY. LTD. Phone +61 2 99294044 305, Level 3, 26 Ridge street, North Sydney marian@higginsplanning.com.au
- Traffic Engineer

TTPA

Phone +61 2 94115660 Address 502, Level 5, 282 Victoria Ave, Chatswood NSW 2067 ross@ttpa.com.au

Catholic Healthcare Limited Suite 1, Level 5, 15 Talavera Road, Macquiare Park,NSW 2113. Phone +61 2 88762100

- Australia 2011 www.groupgsa.com
- T +612 9361 4144 F +612 9332 3458
- architecture interior design urban design landscape nom architect M. Sheldon 3990
- Project Title

MARSH PARADE

CASULA AGED CARE

11 Lang Road,76,78 and 80 March Parade,536,538,540 and 540 Hume Hwy, Casula NSW 2170 Drawing Title

LEVEL 2 PLAN RL 45.8

160474	DA-2002	8	Md
Project No	Drawing No	Issue	
Approved		Approver	
Verified		Checker	
Plotted and checked b	ру	Designer	
Drawing Created (by)		Author	
Drawing Created (date	e)	12/01/17	
Scale		1 : 200	
1			

☐ Amendments Issue Description

· 2

PRE-DA MEETING ISSUED FOR INFORMATION ISSUED FOR INFORMATION

Date 25/11/16 12.01.17 02.02.17

FOR TENDER

Civil Engineer / Structural Engineer

- BONACCI GROUP Phone +61 2 82478400 Address Level 6, 37 York Street, Sydney NSW 2000
- Electrical Engineer / Hydraulic Engineer / Mechanical Engineer
- DSC CONSULTING ENGINEERS Phone +61 2 94161177 57-59 Hill Street, Roseville, NSW 2069 fred.pentecost@dsc.com.au
- Planning
- HIGGINS PLANNING PTY. LTD. Phone +61 2 99294044 305, Level 3, 26 Ridge street, North Sydney marian@higginsplanning.com.au
- Traffic Engineer

TTPA

1 DA-3100

2 DA-3100

Phone +61 2 94115660 Address 502, Level 5, 282 Victoria Ave, Chatswood NSW 2067 ross@ttpa.com.au

Catholic Healthcare Limited Suite 1, Level 5, 15 Talavera Road, Macquiare Park,NSW 2113. Phone +61 2 88762100

- Group GSA Pty Ltd ABN 76 002 113 779 Level 7, 80 William St East Sydney NSW Australia 2011 www.groupgsa.com
- T +612 9361 4144 F +612 9332 3458
- architecture interior design urban design landscape nom architect M. Sheldon 3990
- Project Title

CASULA AGED CARE

11 Lang Road,76,78 and 80 March Parade,536,538,540 and 540 Hume Hwy, Casula NSW 2170 Drawing Title

ROOF PLAN

160474	DA-2003	3	ΡM
Project No	Drawing No	Issue	
Approved		Approver	
Verified		Checker	
Plotted and checked b	у	Designer	
Drawing Created (by)		Author	
Drawing Created (date	9)	12/01/17	
Scale		1 : 200	

2 SOUTH ELEVATION

TH ELEVATION

Issue Description ISSUED FOR INFORMATION '1

Date 15.02.17

_____ _____

DA SUBMISSION

- Civil Engineer / Structural Engineer
- BONACCI GROUP Phone +61 2 82478400 Address Level 6, 37 York Street, Sydney NSW 2000
- Electrical Engineer / Hydraulic Engineer / Mechanical Engineer
- DSC CONSULTING ENGINEERS Phone +61 2 94161177 57-59 Hill Street, Roseville, NSW 2069 fred.pentecost@dsc.com.au
- Planning
- HIGGINS PLANNING PTY. LTD. Phone +61 2 99294044 305, Level 3, 26 Ridge street, North Sydney marian@higginsplanning.com.au
- Traffic Engineer

TTPA

Phone +61 2 94115660 Address 502, Level 5, 282 Victoria Ave, Chatswood NSW 2067 ross@ttpa.com.au

Catholic Healthcare Limited Suite 1, Level 5, 15 Talavera Road, Macquiare Park,NSW 2113. Phone +61 2 88762100

- Group GSA Pty Ltd ABN 76 002 113 779 Level 7, 80 William St East Sydney NSW Australia 2011 www.groupgsa.com
- T +612 9361 4144 F +612 9332 3458
- architecture interior design urban design landscape nom architect M. Sheldon 3990

Project Title

CASULA AGED CARE

11 Lang Road,76,78 and 80 March Parade,536,538,540 and 540 Hume Hwy, Casula NSW 2170

Drawing Title NORTH / SOUTH ELEVATIONS

Scale		As indicated	
Drawing Created (date	e)	11/08/16	
Drawing Created (by)		Author	
Plotted and checked b	ру	Designer	
Verified		Checker	
Approved		Approver	
Project No	Drawing No	Issue	
160474	DA-3000	1	MO

EAST ELEVATION

160474	DA-3001	1
Project No	Drawing No	Issue
Approved		Approver
Verified		Checker
Plotted and checked b	У	Designer
Drawing Created (by)		Author
Drawing Created (date	e)	11/08/16
		As indicated

L.....

Issue Description Date PRE-DA MEETING 25/11/16 DA SUBMISSION Civil Engineer / Structural Engineer BONACCI GROUP Phone +61 2 82478400 Address Level 6, 37 York Street, Sydney NSW 2000 Electrical Engineer / Hydraulic Engineer / Mechanical Engineer DSC CONSULTING ENGINEERS Phone +61 2 94161177 57-59 Hill Street, Roseville, NSW 2069 fred.pentecost@dsc.com.au Planning HIGGINS PLANNING PTY. LTD. Phone +61 2 99294044 305, Level 3, 26 Ridge street, North Sydney marian@higginsplanning.com.au Traffic Engineer TTPA Phone +61 2 94115660 Address 502, Level 5, 282 Victoria Ave, Chatswood NSW 2067 ross@ttpa.com.au catholic healthcare Catholic Healthcare Limited Suite 1, Level 5, 15 Talavera Road, Macquiare Park,NSW 2113. Phone +61 2 88762100 Group GSA Pty Ltd ABN 76 002 113 779 Level 7, 80 William St East Sydney NSW Australia 2011 www.groupgsa.com T +612 9361 4144 F +612 9332 3458 architecture interior design urban design landscape nom architect M. Sheldon 3990 Project Title CASULA AGED CARE 11 Lang Road,76,78 and 80 March Parade,536,538,540 and 540 Hume Hwy, Casula NSW 2170 Drawing Title SECTIONS

Client

☐ Amendments

Scale		As indicated
Drawing Created (date)		11/08/16
Drawing Created (by)		Author
Plotted and checked by		Designer
Verified		Checker
Approved		Approver
Project No	Drawing No	Issue
160474	DA-3100	1

GFA CALCULATIONS SITE AREA

GROUND FLOOR (EXCLUDING LAUNDRY, KITCHEN, STORE AND LOADING DOCK.) LEVEL 1 LEVEL 2 TOTAL GFA

FSR

☐ Amendments

Date 15.02.17

DA SUBMISSION

Civil Engineer / Structural Engineer BONACCI GROUP Phone +61 2 82478400 Address Level 6, 37 York Street, Sydney NSW 2000

Electrical Engineer / Hydraulic Engineer / Mechanical Engineer DSC CONSULTING ENGINEERS Phone +61 2 94161177 57-59 Hill Street, Roseville, NSW 2069 fred.pentecost@dsc.com.au

Planning

HIGGINS PLANNING PTY. LTD. Phone +61 2 99294044 305, Level 3, 26 Ridge street, North Sydney marian@higginsplanning.com.au

- Traffic Engineer

TTPA

Phone +61 2 94115660 Address 502, Level 5, 282 Victoria Ave, Chatswood NSW 2067 ross@ttpa.com.au

Catholic Healthcare Limited Suite 1, Level 5, 15 Talavera Road, Macquiare Park,NSW 2113. Phone +61 2 88762100

Group GSA Pty Ltd ABN 76 002 113 779 Level 7, 80 William St East Sydney NSW Australia 2011 www.groupgsa.com

- T +612 9361 4144 F +612 9332 3458
- architecture interior design urban design landscape , nom architect M. Sheldon 3990

Project Title

CASULA AGED CARE

11 Lang Road,76,78 and 80 March Parade,536,538,540 and 540 Hume Hwy, Casula NSW 2170 Drawing Title

GFA CALCULATIONS

Scale		1 : 500
	、 、	
Drawing Created (date	2)	11/25/16
Drawing Created (by)		Author
Plotted and checked b	у	Designer
Verified		Checker
Approved		Approver
Project No	Drawing No	Issue
160474	DA-4000	1

This drawing is the copyright of Group GSA Pty Ltd and may not be altered, reproduced or transmitted in any form or by any means in part or in whole without the written permission of Group GSA Pty Ltd. All levels and dimensions are to be checked and verified on site prior to the commencement of any work, making of shop drawings or fabrication of components. Do not scale drawings. Use figured Dimensions.

8564 M2 635.8 M2 3685.5 M2 3528.6 M2 7850 M2 0.91:1

Introduction

These notes have been provided to amplify DP's report in regard to classification methods, field procedures and the comments section. Not all are necessarily relevant to all reports.

DP's reports are based on information gained from limited subsurface excavations and sampling, supplemented by knowledge of local geology and experience. For this reason, they must be regarded as interpretive rather than factual documents, limited to some extent by the scope of information on which they rely.

Copyright

This report is the property of Douglas Partners Pty Ltd. The report may only be used for the purpose for which it was commissioned and in accordance with the Conditions of Engagement for the commission supplied at the time of proposal. Unauthorised use of this report in any form whatsoever is prohibited.

Borehole and Test Pit Logs

The borehole and test pit logs presented in this report are an engineering and/or geological interpretation of the subsurface conditions, and their reliability will depend to some extent on frequency of sampling and the method of drilling or excavation. Ideally, continuous undisturbed sampling or core drilling will provide the most reliable assessment, but this is not always practicable or possible to justify on economic grounds. In any case the boreholes and test pits represent only a very small sample of the total subsurface profile.

Interpretation of the information and its application to design and construction should therefore take into account the spacing of boreholes or pits, the frequency of sampling, and the possibility of other than 'straight line' variations between the test locations.

Groundwater

Where groundwater levels are measured in boreholes there are several potential problems, namely:

 In low permeability soils groundwater may enter the hole very slowly or perhaps not at all during the time the hole is left open;

- A localised, perched water table may lead to an erroneous indication of the true water table;
- Water table levels will vary from time to time with seasons or recent weather changes. They may not be the same at the time of construction as are indicated in the report; and
- The use of water or mud as a drilling fluid will mask any groundwater inflow. Water has to be blown out of the hole and drilling mud must first be washed out of the hole if water measurements are to be made.

More reliable measurements can be made by installing standpipes which are read at intervals over several days, or perhaps weeks for low permeability soils. Piezometers, sealed in a particular stratum, may be advisable in low permeability soils or where there may be interference from a perched water table.

Reports

The report has been prepared by qualified personnel, is based on the information obtained from field and laboratory testing, and has been undertaken to current engineering standards of interpretation and analysis. Where the report has been prepared for a specific design proposal, the information and interpretation may not be relevant if the design proposal is changed. If this happens, DP will be pleased to review the report and the sufficiency of the investigation work.

Every care is taken with the report as it relates to interpretation of subsurface conditions, discussion of geotechnical and environmental aspects, and recommendations or suggestions for design and construction. However, DP cannot always anticipate or assume responsibility for:

- Unexpected variations in ground conditions. The potential for this will depend partly on borehole or pit spacing and sampling frequency;
- Changes in policy or interpretations of policy by statutory authorities; or
- The actions of contractors responding to commercial pressures.

If these occur, DP will be pleased to assist with investigations or advice to resolve the matter.

About this Report

Site Anomalies

In the event that conditions encountered on site during construction appear to vary from those which were expected from the information contained in the report, DP requests that it be immediately notified. Most problems are much more readily resolved when conditions are exposed rather than at some later stage, well after the event.

Information for Contractual Purposes

Where information obtained from this report is provided for tendering purposes, it is recommended that all information, including the written report and discussion, be made available. In circumstances where the discussion or comments section is not relevant to the contractual situation, it may be appropriate to prepare a specially edited document. DP would be pleased to assist in this regard and/or to make additional report copies available for contract purposes at a nominal charge.

Site Inspection

The company will always be pleased to provide engineering inspection services for geotechnical and environmental aspects of work to which this report is related. This could range from a site visit to confirm that conditions exposed are as expected, to full time engineering presence on site.
Appendix B

Site Photographs

Photograph 1 - Typical Fibro Dwelling on the Site

Photograph 2- Typical Brick Dwelling on the Site

	Site Photographs	PROJECT:	85600
Douglas Partners	Lang Road, Marsh Parade &	PLATE No:	B1
Geotechnics Environment Groundwater	Hume Highway, Casula	REV:	А
	CLIENT: Catholic Healthcare Ltd	DATE:	7-Feb-17

Photograph 3 - Looking East Across Open Grassed Area in Central Area of Site

Photograph 4 - Typical Backyard on the Site (e.g. Garden Bed)

	Site Photographs	PROJECT:	85600
Douglas Partners	Lang Road, Marsh Parade &	PLATE No:	B2
Geotechnics Environment Groundwater	Hume Highway, Casula	REV:	А
	CLIENT: Catholic Healthcare Ltd	DATE:	7-Feb-17

Photograph 5 - Typical Backyard on the Site (Open Grassed Area)

Photograph 6 - Typical Backyard on the Site (Open Grassed Area)

	Site Photographs	PROJECT:	85600
Douglas Partners	Lang Road, Marsh Parade &	PLATE No:	B3
Geotechnics Environment Groundwater	Hume Highway, Casula	REV:	А
	CLIENT: Catholic Healthcare Ltd	DATE:	7-Feb-17

Photograph 8 - General Rubbish on the Site (e.g chair, roof tiles, plastic)

	Site Photographs	PROJECT:	85600
Douglas Partners	Lang Road, Marsh Parade &	PLATE No:	B4
Geotechnics Environment Groundwater	Hume Highway, Casula	REV:	А
	CLIENT: Catholic Healthcare Ltd	DATE:	7-Feb-17

Photograph 9 - General Rubbish/Anthropogenic on the Surface (e.g metal, plastic, tile)

Photograph 10- Bonded Asbestos Fragments on Surface Near/Under Structures

	Site Photographs	PROJECT:	85600
Douglas Partners	Lang Road, Marsh Parade &	PLATE No:	B5
Geotechnics Environment Groundwater	Hume Highway, Casula	REV:	А
	CLIENT: Catholic Healthcare Ltd	DATE:	7-Feb-17

Appendix C

Data Quality Assessment

DATA QUALITY ASSESSMENT

Q1. Data Quality Objectives

The Detailed Site Investigation (DSI) was prepared with reference to the seven step data quality objective (DQO) process which is provided in Appendix B, Schedule B2 of the *National Environment Protection (Assessment of Site Contamination) Measure* 1999 as amended 2013 (NEPC, 2013). The DQO process is outlined as follows:

- Stating the Problem;
- Identifying the Decision;
- Identifying Inputs to the Decision;
- Defining the Boundary of the Assessment;
- Developing a Decision Rule;
- Specifying Acceptable Limits on Decision Errors; and
- Optimising the Design for Obtaining Data.

The DQOs have been addressed within the report as shown in Table Q1.

Table Q1:	Data	Quality	Objectives
-----------	------	---------	------------

Data Quality Objective	Report Section where Addressed
State the Problem	S1 Introduction
Identify the Decision	S1 Introduction (objective)
	S10 Discussion and Conclusion
Identify Inputs to the Decision	S1 Introduction
	S3 Site Identification and Description
	S4 Regional Geology, Hydrogeology and Topography
	S5 Review of Pervious Reports
	S8 Site Assessment Criteria
	S9 Results
Define the Boundary of the Assessment	S3 Site Identification and Description
	Drawing 1 - Appendix A
Develop a Decision Rule	S8 Site Assessment Criteria
Specify Acceptable Limits on Decision Errors	S7 Data Quality Objectives
	S8 Site Assessment Criteria
	QA/QC Procedures and Results – Sections Q2, Q3
Optimise the Design for Obtaining Data	S2 Scope of Works
	S7.6 Sample Location and Rationale
	QA/QC Procedures and Results – Sections Q2, Q3

Q2. FIELD AND LABORATORY QUALITY CONTROL

The field and laboratory quality control (QC) procedures and results are summarised in Tables Q2 and Q3. Reference should be made to the fieldwork and analysis procedures in Section 7 and the laboratory results certificates in Appendix E for further details.

Table Q2: Field QC

Item	Frequency	Acceptance Criteria	Achievement
Intra-laboratory replicates	10% primary samples	RPD <30% inorganics), <50% (organics)	yes ¹
NOTES: 1 quali	tative assessment of RPD re	sults overall; refer Section Q2.1	

Table Q3: Laboratory QC

Item	Frequency	Acceptance Criteria	Achievement
Analytical laboratories used		NATA accreditation	yes
Holding times		In accordance with NEPC (2013) which references various Australian and international standards	yes
Laboratory / Reagent Blanks	1 per lab batch	<pql< td=""><td>yes</td></pql<>	yes
Laboratory duplicates	10% primary samples	Laboratory specific ¹	
Matrix Spikes	1 per lab batch	70-130% recovery (inorganics);	yes
		60-140% (organics);	
		10-140% (SVOC, speciated phenols)	
Surrogate Spikes	organics by GC	70-130% recovery (inorganics);	yes
		60-140% (organics);	
		10-140% (SVOC, speciated phenols)	
Control Samples	1 per lab batch	70-130% recovery (inorganics);	yes
		60-140% (organics);	
		10-140% (SVOC, speciated phenols)	

Notes: 1 ELS: <5xPQL – any RPD; >5xPQL – 0-50%RPD

In summary, the QC data is considered to be of sufficient quality to be acceptable for the purpose and objective of this assessment.

Q2.1 Intra-Laboratory Replicates

Intra-laboratory replicates were analysed as an internal check of the reproducibility within the primary laboratory Envirolab Services Pty Ltd (ELS) and as a measure of consistency of sampling techniques. The comparative results of analysis between original and intra-laboratory replicate samples are summarised in Table Q4.

Note that, where both samples are below LOR/PQL the difference and RPD has been given as zero. Where one sample is reported below LOR/PQL, but a concentration is reported for the other, the LOR/PQL value has been used for calculation of the RPD for the less than LOR/PQL sample.

								Me	etals					F	РАН	
Lab	Sample ID	Date Sampled	Media	Units	As	Cd	Cr	Cu	Pb	Hg	Ni	Zn	total	BaP TEQ	BaP	Naphthalene
ELS	BH4/1.5	23/01/2017	Natural	mg/kg	6	<0.4	10	22	17	<0.1	4	26	0	<0.5	<0.05	<0.1
ELS	BD5/230117	23/01/2017	Natural	mg/kg	5	<0.4	9	20	16	<0.1	4	24	0	<0.5	<0.05	<0.1
	Diff	erence		mg/kg	1	0	1	2	1	0	0	2	0	0	0	0
	F	RPD		%	18	0	11	10	6	0	0	9	0	0	0	0
ELS	BH10/0.02-0.1	23/01/2017	Filling	mg/kg	11	<0.4	24	21	180	<0.1	8	160	0	<0.5	<0.05	<0.1
ELS	BD2/231017	23/01/2017	Filling	mg/kg	9	<0.4	20	16	100	<0.1	6	100	0	<0.5	<0.05	<0.1
	Diff	erence		mg/kg	2	0	4	5	80	0	2	60	0	0	0	0
	F	RPD		%	20	0	18	27	<mark>57</mark>	0	29	<mark>46</mark>	0	0	0	0
ELS	BH18/0.9-1	23/01/2017	Natural	mg/kg	32	<0.4	10	19	18	<0.1	3	21	0	<0.5	<0.05	<0.1
ELS	BD4/230117	23/01/2017	Natural	mg/kg	26	<0.4	9	16	17	<0.1	3	19	0	<0.5	<0.05	<0.1
	Diff	erence		mg/kg	6	0	1	3	1	0	0	2	0	0	0	0
	F	RPD		%	21	0	11	17	6	0	0	10	0	0	0	0

Table Q4: Relative Percentage Difference Results – Intra-laboratory Replicates

Notes: - not applicable, not tested

The calculated RPD values were within the acceptable range of \pm 30 for inorganic analytes and \pm 50% for organics with the with the exception of those in bold and highlighted. However, this is not considered to be significant because:

- The replicate sample which exceeded the acceptable range was from fill soils which were heterogeneous in nature;
- Soil replicates, rather than homogenised soil duplicates, were used to minimise the risk of possible volatile loss, hence greater variability can be expected;
- The majority of RPDs within a replicate pair being within the acceptable limits; and
- All other QA/QC parameters met the DQIs.

Overall, the intra-laboratory replicate comparisons indicate that the sampling techniques were generally consistent and repeatable.

Q3. Data Quality Indicators

The reliability of field procedures and analytical results was assessed against the following data quality indicators (DQIs):

- Completeness a measure of the amount of usable data from a data collection activity;
- Comparability the confidence (qualitative) that data may be considered to be equivalent for each sampling and analytical event;
- Representativeness the confidence (qualitative) of data representativeness of media present onsite;
- Precision a measure of variability or reproducibility of data; and
- Accuracy a measure of closeness of the data to the 'true' value.

The DQIs were assessed as outlined in the following Table Q5.

ndicators
Method(s) of Achievement
Planned systematic and selected target locations sampled;
Preparation of field logs, sample location plan and chain of custody (COC) records;
Laboratory sample receipt information received confirming receipt of samples intact and appropriateness of the chain of custody;
Samples analysed for contaminants of potential concern (COPC) identified in the Conceptual Site Model (CSM);
Completion of COC documentation;
NATA endorsed laboratory certificates provided by the laboratory;

Satisfactory frequency and results for field and laboratory QC samples as

Using appropriate techniques for sample recovery, storage and transportation,

Works undertaken by appropriately experienced and trained DP environmental

Use of NATA registered laboratories, with test methods the same or similar

Sample numbers recovered and analysed are considered to be representative of

Table Q5: Data Quality Indicators

discussed in Section Q2.

scientist / engineer;

between laboratories;

Target media sampled;

which were the same for the duration of the project;

Satisfactory results for field and laboratory QC samples.

Spatial and temporal distribution of sample locations;

Samples were extracted and analysed within holding times;

Acceptable RPD between original samples and replicates;

Satisfactory results for all field and laboratory QC samples.

Samples were analysed in accordance with the analysis request.

Satisfactory results for all other field and laboratory QC samples.

the target media and complying with DQOs;

Data Quality Indicator

Completeness

Comparability

Representativeness

Precision

Accuracy

Based on the above, it is considered that the DQIs have been complied with. As such, it is concluded
that the field and laboratory test data obtained are reliable and useable for this assessment.

Appendix D

Test Bore Log Results

Descriptive Notes

Sampling

Sampling is carried out during drilling or test pitting to allow engineering examination (and laboratory testing where required) of the soil or rock.

Disturbed samples taken during drilling provide information on colour, type, inclusions and, depending upon the degree of disturbance, some information on strength and structure.

Undisturbed samples are taken by pushing a thinwalled sample tube into the soil and withdrawing it to obtain a sample of the soil in a relatively undisturbed state. Such samples yield information on structure and strength, and are necessary for laboratory determination of shear strength and compressibility. Undisturbed sampling is generally effective only in cohesive soils.

Test Pits

Test pits are usually excavated with a backhoe or an excavator, allowing close examination of the insitu soil if it is safe to enter into the pit. The depth of excavation is limited to about 3 m for a backhoe and up to 6 m for a large excavator. A potential disadvantage of this investigation method is the larger area of disturbance to the site.

Large Diameter Augers

Boreholes can be drilled using a rotating plate or short spiral auger, generally 300 mm or larger in diameter commonly mounted on a standard piling rig. The cuttings are returned to the surface at intervals (generally not more than 0.5 m) and are disturbed but usually unchanged in moisture content. Identification of soil strata is generally much more reliable than with continuous spiral flight augers, and is usually supplemented by occasional undisturbed tube samples.

Continuous Spiral Flight Augers

The borehole is advanced using 90-115 mm diameter continuous spiral flight augers which are withdrawn at intervals to allow sampling or in-situ testing. This is a relatively economical means of drilling in clays and sands above the water table. Samples are returned to the surface, or may be collected after withdrawal of the auger flights, but they are disturbed and may be mixed with soils from the sides of the hole. Information from the drilling (as distinct from specific sampling by SPTs or undisturbed samples) is of relatively low reliability, due to the remoulding, possible mixing or softening of samples by groundwater.

Non-core Rotary Drilling

The borehole is advanced using a rotary bit, with water or drilling mud being pumped down the drill rods and returned up the annulus, carrying the drill cuttings. Only major changes in stratification can be determined from the cuttings, together with some information from the rate of penetration. Where drilling mud is used this can mask the cuttings and reliable identification is only possible from separate sampling such as SPTs.

Continuous Core Drilling

A continuous core sample can be obtained using a diamond tipped core barrel, usually with a 50 mm internal diameter. Provided full core recovery is achieved (which is not always possible in weak rocks and granular soils), this technique provides a very reliable method of investigation.

Standard Penetration Tests

Standard penetration tests (SPT) are used as a means of estimating the density or strength of soils and also of obtaining a relatively undisturbed sample. The test procedure is described in Australian Standard 1289, Methods of Testing Soils for Engineering Purposes - Test 6.3.1.

The test is carried out in a borehole by driving a 50 mm diameter split sample tube under the impact of a 63 kg hammer with a free fall of 760 mm. It is normal for the tube to be driven in three successive 150 mm increments and the 'N' value is taken as the number of blows for the last 300 mm. In dense sands, very hard clays or weak rock, the full 450 mm penetration may not be practicable and the test is discontinued.

The test results are reported in the following form.

 In the case where full penetration is obtained with successive blow counts for each 150 mm of, say, 4, 6 and 7 as:

 In the case where the test is discontinued before the full penetration depth, say after 15 blows for the first 150 mm and 30 blows for the next 40 mm as:

15, 30/40 mm

Sampling Methods

The results of the SPT tests can be related empirically to the engineering properties of the soils.

Dynamic Cone Penetrometer Tests / Perth Sand Penetrometer Tests

Dynamic penetrometer tests (DCP or PSP) are carried out by driving a steel rod into the ground using a standard weight of hammer falling a specified distance. As the rod penetrates the soil the number of blows required to penetrate each successive 150 mm depth are recorded. Normally there is a depth limitation of 1.2 m, but this may be extended in certain conditions by the use of extension rods. Two types of penetrometer are commonly used.

- Perth sand penetrometer a 16 mm diameter flat ended rod is driven using a 9 kg hammer dropping 600 mm (AS 1289, Test 6.3.3). This test was developed for testing the density of sands and is mainly used in granular soils and filling.
- Cone penetrometer a 16 mm diameter rod with a 20 mm diameter cone end is driven using a 9 kg hammer dropping 510 mm (AS 1289, Test 6.3.2). This test was developed initially for pavement subgrade investigations, and correlations of the test results with California Bearing Ratio have been published by various road authorities.

Soil Descriptions

Description and Classification Methods

The methods of description and classification of soils and rocks used in this report are based on Australian Standard AS 1726, Geotechnical Site Investigations Code. In general, the descriptions include strength or density, colour, structure, soil or rock type and inclusions.

Soil Types

Soil types are described according to the predominant particle size, qualified by the grading of other particles present:

Туре	Particle size (mm)
Boulder	>200
Cobble	63 - 200
Gravel	2.36 - 63
Sand	0.075 - 2.36
Silt	0.002 - 0.075
Clay	<0.002

The sand and gravel sizes can be further subdivided as follows:

Туре	Particle size (mm)
Coarse gravel	20 - 63
Medium gravel	6 - 20
Fine gravel	2.36 - 6
Coarse sand	0.6 - 2.36
Medium sand	0.2 - 0.6
Fine sand	0.075 - 0.2

The proportions of secondary constituents of soils are described as:

Term	Proportion	Example
And	Specify	Clay (60%) and Sand (40%)
Adjective	20 - 35%	Sandy Clay
Slightly	12 - 20%	Slightly Sandy Clay
With some	5 - 12%	Clay with some sand
With a trace of	0 - 5%	Clay with a trace of sand

Definitions of grading terms used are:

- Well graded a good representation of all particle sizes
- Poorly graded an excess or deficiency of particular sizes within the specified range
- Uniformly graded an excess of a particular particle size
- Gap graded a deficiency of a particular particle size with the range

Cohesive Soils

Cohesive soils, such as clays, are classified on the basis of undrained shear strength. The strength may be measured by laboratory testing, or estimated by field tests or engineering examination. The strength terms are defined as follows:

Description	Abbreviation	Undrained shear strength (kPa)
Very soft	VS	<12
Soft	S	12 - 25
Firm	f	25 - 50
Stiff	st	50 - 100
Very stiff	vst	100 - 200
Hard	h	>200

Cohesionless Soils

Cohesionless soils, such as clean sands, are classified on the basis of relative density, generally from the results of standard penetration tests (SPT), cone penetration tests (CPT) or dynamic penetrometers (PSP). The relative density terms are given below:

Relative Density	Abbreviation	SPT N value	CPT qc value (MPa)
Very loose	vl	<4	<2
Loose		4 - 10	2 -5
Medium dense	md	10 - 30	5 - 15
Dense	d	30 - 50	15 - 25
Very dense	vd	>50	>25

Soil Descriptions

Soil Origin

It is often difficult to accurately determine the origin of a soil. Soils can generally be classified as:

- Residual soil derived from in-situ weathering of the underlying rock;
- Transported soils formed somewhere else and transported by nature to the site; or
- Filling moved by man.

Transported soils may be further subdivided into:

- Alluvium river deposits
- Lacustrine lake deposits
- Aeolian wind deposits
- Littoral beach deposits
- Estuarine tidal river deposits
- Talus scree or coarse colluvium
- Slopewash or Colluvium transported downslope by gravity assisted by water. Often includes angular rock fragments and boulders.

Rock Descriptions

Rock Strength

Rock strength is defined by the Point Load Strength Index $(Is_{(50)})$ and refers to the strength of the rock substance and not the strength of the overall rock mass, which may be considerably weaker due to defects. The test procedure is described by Australian Standard 4133.4.1 - 1993. The terms used to describe rock strength are as follows:

Term	Abbreviation	Point Load Index Is ₍₅₀₎ MPa	Approx Unconfined Compressive Strength MPa*
Extremely low	EL	<0.03	<0.6
Very low	VL	0.03 - 0.1	0.6 - 2
Low	L	0.1 - 0.3	2 - 6
Medium	М	0.3 - 1.0	6 - 20
High	Н	1 - 3	20 - 60
Very high	VH	3 - 10	60 - 200
Extremely high	EH	>10	>200

* Assumes a ratio of 20:1 for UCS to Is₍₅₀₎

Degree of Weathering

The degree of weathering of rock is classified as follows:

Term	Abbreviation	Description
Extremely weathered	EW	Rock substance has soil properties, i.e. it can be remoulded and classified as a soil but the texture of the original rock is still evident.
Highly weathered	HW	Limonite staining or bleaching affects whole of rock substance and other signs of decomposition are evident. Porosity and strength may be altered as a result of iron leaching or deposition. Colour and strength of original fresh rock is not recognisable
Moderately weathered	MW	Staining and discolouration of rock substance has taken place
Slightly weathered	SW	Rock substance is slightly discoloured but shows little or no change of strength from fresh rock
Fresh stained	Fs	Rock substance unaffected by weathering but staining visible along defects
Fresh	Fr	No signs of decomposition or staining

Degree of Fracturing

The following classification applies to the spacing of natural fractures in diamond drill cores. It includes bedding plane partings, joints and other defects, but excludes drilling breaks.

Term	Description
Fragmented	Fragments of <20 mm
Highly Fractured	Core lengths of 20-40 mm with some fragments
Fractured	Core lengths of 40-200 mm with some shorter and longer sections
Slightly Fractured	Core lengths of 200-1000 mm with some shorter and loner sections
Unbroken	Core lengths mostly > 1000 mm

Rock Descriptions

Rock Quality Designation

The quality of the cored rock can be measured using the Rock Quality Designation (RQD) index, defined as:

where 'sound' rock is assessed to be rock of low strength or better. The RQD applies only to natural fractures. If the core is broken by drilling or handling (i.e. drilling breaks) then the broken pieces are fitted back together and are not included in the calculation of RQD.

Stratification Spacing

For sedimentary rocks the following terms may be used to describe the spacing of bedding partings:

Term	Separation of Stratification Planes
Thinly laminated	< 6 mm
Laminated	6 mm to 20 mm
Very thinly bedded	20 mm to 60 mm
Thinly bedded	60 mm to 0.2 m
Medium bedded	0.2 m to 0.6 m
Thickly bedded	0.6 m to 2 m
Very thickly bedded	> 2 m

Symbols & Abbreviations

Introduction

These notes summarise abbreviations commonly used on borehole logs and test pit reports.

Drilling or Excavation Methods

С	Core Drilling
R	Rotary drilling
SFA	Spiral flight augers
NMLC	Diamond core - 52 mm dia
NQ	Diamond core - 47 mm dia
HQ	Diamond core - 63 mm dia
PQ	Diamond core - 81 mm dia

Water

\triangleright	Water seep
\bigtriangledown	Water level

Sampling and Testing

- Auger sample А
- В Bulk sample
- D Disturbed sample Е
- Environmental sample
- U_{50} Undisturbed tube sample (50mm)
- W Water sample
- pocket penetrometer (kPa) рр
- PID Photo ionisation detector
- PL Point load strength Is(50) MPa
- S Standard Penetration Test V Shear vane (kPa)

Description of Defects in Rock

The abbreviated descriptions of the defects should be in the following order: Depth, Type, Orientation, Coating, Shape, Roughness and Other. Drilling and handling breaks are not usually included on the logs.

Defect Type

В	Bedding plane
Cs	Clay seam
Cv	Cleavage
Cz	Crushed zone
Ds	Decomposed seam
F	Fault
J	Joint
Lam	lamination
Pt	Parting
Sz	Sheared Zone
V	Vein

Orientation

The inclination of defects is always measured from the perpendicular to the core axis.

h horizonta

21

- vertical v
- sub-horizontal sh
- sub-vertical sv

Coating or Infilling Term

cln	clean
со	coating
he	healed
inf	infilled
stn	stained
ti	tight
vn	veneer

Coating Descriptor

ca	calcite
cbs	carbonaceous
cly	clay
fe	iron oxide
mn	manganese
slt	silty

Shape

cu	curved
ir	irregular
pl	planar
st	stepped
un	undulating

Roughness

ро	polished
ro	rough
sl	slickensided
sm	smooth
vr	very rough

Other

fg	fragmented
bnd	band
qtz	quartz

Symbols & Abbreviations

Graphic Symbols for Soil and Rock

General

Asphalt Road base

Concrete

Filling

Soils

Topsoil

Peat

Clay

Silty clay

Sandy clay

Gravelly clay

Shaly clay

Silt

Clayey silt

Sandy silt

Sand

Clayey sand

Silty sand

Gravel

Sandy gravel

Cobbles, boulders

Talus

Sedimentary Rocks

Limestone

Metamorphic Rocks

Slate, phyllite, schist

Quartzite

Gneiss

Igneous Rocks

Granite

Dolerite, basalt, andesite

Dacite, epidote

Tuff, breccia

Porphyry

SURFACE LEVEL: 43.0 AHD EASTING: 306699 NORTHING: 6241736 DIP/AZIMUTH: 90°/--

BORE No: 1 PROJECT No: 85600.00 DATE: 24/1/2017 SHEET 1 OF 1

Sampling & In Situ Testing Description Graphic Log Dynamic Penetrometer Test Water Depth 닙 of Depth Sample (blows per 150mm) Results & Comments (m) **Lype** Strata 20 10 15 0.0 FILLING (TOPSOIL) - loosely compacted, brown to dark A/E 0.1 grey silt filling, traces of rootlets, siltstone gravel and fine 0.18 sand CLAY - very stiff, red-brown to brown clay, trace of silt, humid 0.45 A/E 0.5 -4 1.0 A/E* 1.05 15 CLAY - very stiff, red-brown and light grey mottled clay, traces of silt and some ironstone gravel, humid -4-2 20 -2 Α 2.05 -8 - 3 - 3 3.1 CLAY - very stiff to hard, light brown clay with traces of silt 3.2 and some ironstone gravel, humid А 3.3 3.4 SILTSTONE - extremely low strength, extremely 3.45 A 3.5 weathered, light grey-light brown siltstone with some clay 3.5 bands Bore discontinued at 3.5m - target depth reached (auger refusal) -ස - 4 4 DRILLER: GM LOGGED: AT CASING: Uncased RIG: Bobcat TYPE OF BORING: 150mm diameter solid flight auger (TC-bit) to 3.5m WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: *BD6/240117 taken at 1.0m

SAMPLING & IN SITU TESTING LEGEND

Gas sample Piston sample Tube sample (x mm dia.) Water sample Water seep Water level

G P U, W

₽

A Auger sample B Bulk sample BLK Block sample

CDF

Core drilling Disturbed sample Environmental sample

LECERNU PIID Photo ionisation detector (ppm) PL(A) Point load axial test Is(50) (MPa) PL(D) Point load diametral test Is(50) (MPa) pp Pocket penetrometer (kPa) S Standard penetration test V Shear vane (kPa)

CLIENT:

PROJECT:

LOCATION:

Catholic Healthcare

Casula

Proposed Residential Aged Care Facility

Marsh Parade, Lang Road, Hume Highway,

Geotechnics | Environment | Groundwater

SURFACE LEVEL: 41.1 AHD EASTING: 306747 NORTHING: 6241709 DIP/AZIMUTH: 90°/-- BORE No: 2 PROJECT No: 85600.00 DATE: 24/1/2017 SHEET 1 OF 1

Sampling & In Situ Testing Description Graphic Log Dynamic Penetrometer Test Water Depth 닙 of Sample (blows per 150mm) Depth Type Results & Comments (m) Strata 20 FILLING - loosely compacted, dark grey-brown silt filling 0.1 with traces of sand, rootlets and gravel A/E 0 15 0.45 A/E 0.5 0.55 CLAY - very stiff, red-brown and grey mottled clay with traces of silt, humid 1.0 AVE 1.05 -9 1.2 CLAY - very stiff, light grey, red-brown mottled clay with traces of silt, humid - 2 20 -2 A 2.05 <u>-</u>@ 2.8 2.8 2.85 CLAY - hard, red-brown and grey mottled clay with some A ironstone bands and traces of silt, humid 3 3.0 3.0 - 3 SILTSTONE - extremely low strength, extremely to highly Α 3.05 3.1 weathered, light brown siltstone Bore discontinued at 3.1m - target depth reached (auger refusal) 4 - 4 37 DRILLER: GM LOGGED: AT CASING: Uncased RIG: Bobcat TYPE OF BORING: 150mm diameter solid flight auger (TC-bit) to 3.1m

WATER OBSERVATIONS: No free groundwater observed whilst augering REMARKS:

 SAMPLING & IN SITU TESTING LEGEND

 A
 Auger sample
 G
 Gas sample
 PID
 Photo ionisation detector (ppm)

 B
 Bulk sample
 P
 Piston sample
 PL(A) Point load axial test Is(50) (MPa)

 BLK Block sample
 Ux
 Tube sample (x mm dia.)
 PL(D) Point load diametral test Is(50) (MPa)

 C
 Core drilling
 W
 Water sample
 p
 Pocket penetrometer (kPa)

 D
 Disturbed sample
 W
 Water level
 V
 Shear vane (kPa)

□ Sand Penetrometer AS1289.6.3.3 ⊠ Cone Penetrometer AS1289.6.3.2

CLIENT: Catholic Healthcare PROJECT: Proposed Residentia

LOCATION:

 Proposed Residential Aged Care Facility
 N: Marsh Parade, Lang Road, Hume Highway, Casula

ility EASTING shway, NORTHI

SURFACE LEVEL: 40.8 AHD **EASTING:** 306786 **NORTHING:** 6241707 **DIP/AZIMUTH:** 90°/-- BORE No: 3 PROJECT No: 85600.00 DATE: 24/1/2017 SHEET 1 OF 2

Sampling & In Situ Testing Description Graphic Log Dynamic Penetrometer Test Water Depth 닙 Sample of (blows per 150mm) Depth Type Results & Comments (m) Strata 20 FILLING - loosely compacted, dark grey-brown silt filling 0.1 with traces of sand, rootlets and gravel A/E 0 15 0.25 CLAY - very stiff, red-brown clay with traces of silt, humid 0.5 0.55 A/E 1.0 1.05 A/E 1.3 CLAY - very stiff, red-brown-grey mottled clay with some silt, moist 15 А 1.55 .<u>ത</u> 18 CLAY - very stiff, red-brown, grey mottled clay with some silt and ironstone fragments, moist 2.0 2.05 - 2 -2 Α 8 2.9 CLAY - very stiff, light grey, red mottled clay with some 3 - 3 silt, humid 3.2 3.25 A 4.0 4 4 A 4.05 43 CLAY - very stiff to hard, light grey and light brown clay with traces of silt and some ironstone bands

 RIG:
 Bobcat
 DRILLER:
 GM

 TYPE OF BORING:
 150mm diameter solid flight auger (TC-bit) to 6.2m

 WATER OBSERVATIONS:
 No free groundwater observed whilst augering

 REMARKS:

CLIENT:

PROJECT:

LOCATION:

Catholic Healthcare

Casula

Proposed Residential Aged Care Facility

Marsh Parade, Lang Road, Hume Highway,

LOGGED: AT

CASING: Uncased

□ Sand Penetrometer AS1289.6.3.3 ☑ Cone Penetrometer AS1289.6.3.2

	SAM	PLINC	3 & IN SITU TESTING	LEGE	ND	1
А	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)	
в	Bulk sample	Р	Piston sample	PL(A) Point load axial test Is(50) (MPa)	
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D	Point load diametral test Is(50) (MPa)	
С	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)	
D	Disturbed sample	⊳	Water seep	S	Standard penetration test	
Е	Environmental sample	¥	Water level	V	Shear vane (kPa)	

SURFACE LEVEL: 40.8 AHD EASTING: 306786 **NORTHING: 6241707 DIP/AZIMUTH:** 90°/--

BORE No: 3 PROJECT No: 85600.00 DATE: 24/1/2017 SHEET 2 OF 2

Deptr		Description	Graphic Log		Sampling & In Situ Testing			ter	Dynamic Penetrometer Test (blows per 150mm) 5 10 15 20		
צ	(m)	of Strata	Grap Grap Type Depth				Results & Comments	Wa			
	- - - -	CLAY - very stiff to hard, light grey and light brown clay with traces of silt and some ironstone bands <i>(continued)</i>							-		
	- 5.8 - -6	SILTSTONE - extremely low strength, extremely to highly weathered, light grey, light brown siltstone	· _ · · ·		6.0 6.05				-6		
	- 6.2 - - -	Bore discontinued at 6.2m - target depth reached (auger refusal)							-		
	- - - 7 -								-7		
	- - -								-		• • • • • • • • • • • • • • • • • • • •
	- - - - 8										•
	-								-		
									-		
	-9								-9		
											· · · ·
	-								-		

DRILLER: GM RIG: Bobcat TYPE OF BORING: 150mm diameter solid flight auger (TC-bit) to 6.2m WATER OBSERVATIONS: No free groundwater observed whilst augering **REMARKS:**

CLIENT:

PROJECT:

LOCATION:

Catholic Healthcare

Casula

Proposed Residential Aged Care Facility

Marsh Parade, Lang Road, Hume Highway,

□ Sand Penetrometer AS1289.6.3.3 ☑ Cone Penetrometer AS1289.6.3.2

	SAMI	PLINC	3 & IN SITU TESTING	LEGE	ND	1	
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)		
В	Bulk sample	Р	Piston sample		Point load axial test Is(50) (MPa)		
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D	Point load diametral test Is(50) (MPa)		
С	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)		
D	Disturbed sample	⊳	Water seep	S	Standard penetration test		
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)		

SURFACE LEVEL: 40.1 AHD 306741 EASTING: NORTHING: 6241771 DIP/AZIMUTH: 90°/--

BORE No: 4 PROJECT No: 85600.00 DATE: 23/1/2017 SHEET 1 OF 1

Sampling & In Situ Testing Description Graphic Log Dynamic Penetrometer Test Water Depth 닙 Sample of (blows per 150mm) Depth Type Results & Comments (m) Strata 20 FILLING - loosely compacted, dark grey silt filling with -9 0.1 some gravel and rootlets and some fine sand A/E 0 15 0.2 CLAY - very stiff, light grey mottled clay, traces of silt, humid 0.5 A/E 0.55 0.8 CLAY - very stiff, red-brown and light grey mottled clay, traces of silt, humid 1.0 AVE 1.05 .<u>ල</u> 15 A/E* 1.55 - 2 20 -2 A 2.05 -22 2.5 2.55 2.5 A CLAY - very stiff to hard, grey-red-brown clay, traces of silt and ironstone bands, humid 2.8 CLAY - very stiff to hard, light grey and brown clay, traces of silt and ironstone bands, humid 3 - 3 34 3.1 Α 3.15 3.3 SILTSTONE - extremely low strength, extremely weathered, light grey siltstone 3.45 3.5 3.5 Bore discontinued at 3.5m - target depth reached (auger refusal) 4 4 -92 **RIG:** Bobcat DRILLER: GM LOGGED: AT CASING: Uncased TYPE OF BORING: 150mm diameter solid flight auger (TC-bit) to 3.5m WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: *BD5/230117 taken at 1.5m

SAMPLING & IN SITU TESTING LEGEND LECERNU PIID Photo ionisation detector (ppm) PL(A) Point load axial test Is(50) (MPa) PL(D) Point load diametral test Is(50) (MPa) pp Pocket penetrometer (kPa) S Standard penetration test V Shear vane (kPa) A Auger sample B Bulk sample BLK Block sample Gas sample Piston sample Tube sample (x mm dia.) Water sample Water seep Water level G P U, W Core drilling Disturbed sample Environmental sample CDE ₽

Sand Penetrometer AS1289.6.3.3 ☑ Cone Penetrometer AS1289.6.3.2

Douglas Partners Geotechnics | Environment | Groundwater

LOCATION:

Catholic Healthcare

Casula

Proposed Residential Aged Care Facility

Marsh Parade, Lang Road, Hume Highway,

CLIENT:

A Augers B Bulksa BLK Blocks

C Core dr D Disturb

PROJECT:

LOCATION:

Catholic Healthcare

Casula

Proposed Residential Aged Care Facility

Marsh Parade, Lang Road, Hume Highway,

SURFACE LEVEL: 39.6 AHD EASTING: 306754 NORTHING: 6241753 DIP/AZIMUTH: 90°/-- BORE No: 5 PROJECT No: 85600.00 DATE: 24/1/2017 SHEET 1 OF 1

Sampling & In Situ Testing Description Graphic Log Dynamic Penetrometer Test Water Depth 닙 of Depth Sample (blows per 150mm) Type Results & Comments (m) Strata 15 20 10 FILLING - loosely compacted, dark brown-grey silt filling, 0.1 traces of fine sand and some rootlets A/E 0 15 0.2 CLAY - very stiff, red-brown clay, traces of silt, humid 0.5 0.55 A/E 0.8 CLAY - very stiff, brown to light brown-grey mottled clay, traces of silt, humid 1.0 1.05 A/E 18 CLAY - very stiff to hard, light brown and light grey clay with some ironstone bands - 2 2.0 2.05 -2 Α 2.7 SILTSTONE - extremely low strength, highly weathered, 2.75 2.8 light grey siltstone Bore discontinued at 2.8m 3 - target depth reached (auger refusal) - 3 99 4 - 4 LOGGED: AT **RIG:** Bobcat DRILLER: GM CASING: Uncased TYPE OF BORING: 150mm diameter solid flight auger (TC-bit) to 2.8m WATER OBSERVATIONS: No free groundwater observed whilst augering **REMARKS:** □ Sand Penetrometer AS1289.6.3.3 ☑ Cone Penetrometer AS1289.6.3.2

SA	AMPLING	3 & IN SITU TESTING	LEGE	IND			
ample	G	Gas sample	PID	Photo ionisation detector (ppm)			
mple	P	Piston sample) Point load axial test Is(50) (MPa)			
ample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test Is(50) (MPa)			
illing	Ŵ	Water sample	pp	Pocket penetrometer (kPa)		Doug	
ed sample	⊳	Water seep	S	Standard penetration test			
mental sampl	le 📱	Water level	V	Shear vane (kPa)		Geotechnics	l Envii
							•

eotechnics | Environment | Groundwater

SURFACE LEVEL: 38.4 AHD EASTING: 306778 NORTHING: 6241777 DIP/AZIMUTH: 90°/--

BORE No: 6A PROJECT No: 85600.00 DATE: 23/1/2017 SHEET 1 OF 1

Sampling & In Situ Testing Description Graphic Log Dynamic Penetrometer Test Water Depth 닙 of Sample (blows per 150mm) Depth Type Results & Comments (m) Strata 10 20 FILLING (TOPSOIL) - loosely compacted, dark 0.1 brown-grey silt filling with traces of fine sand and rootlets A/E 0 16 0 15 FILLING - apparently moderately compacted, dark brown silt filling with traces of red-brown clay and ironstone aravel 0.5 AVE 0.55 0.6 CLAY - very stiff, brown and red-brown mottled clay, 0.7 0.7-2.0m: Bulk sample traces of silt, humid 1.0 AVE 1.05 1.2 CLAY - very stiff, red-brown clay, trace of silt, humid 15 A/E* 1.55 19 А 20 - 2 -2 2.5 2.55 A 2.8 CLAY - very stiff to hard, red-brown clay, trace of silt, humid 3 3.0 3.0 - 3 SILTSTONE - extremely low strength, extremely weathered, light grey siltstone 5,10 s refusal 3.3 3.3 Bore discontinued at 3.3m - target depth reached (auger refusal) 4 - 4 **RIG:** Bobcat DRILLER: GM LOGGED: AT CASING: Uncased

TYPE OF BORING: 150mm diameter solid flight auger (TC-bit) to 3.3m WATER OBSERVATIONS: No free groundwater observed whilst augering REMARKS: *BD3/2310116 taken at 1.5m

SAMPLING & IN SITU TESTING LEGEND

Gas sample Piston sample Tube sample (x mm dia.) Water sample Water seep Water level

G P U, W

₽

A Auger sample B Bulk sample BLK Block sample

CDF

Core drilling Disturbed sample Environmental sample

CLIENT:

PROJECT:

LOCATION:

Catholic Healthcare

Casula

Proposed Residential Aged Care Facility

Marsh Parade, Lang Road, Hume Highway,

П

LECERNU PIID Photo ionisation detector (ppm) PL(A) Point load axial test Is(50) (MPa) PL(D) Point load diametral test Is(50) (MPa) pp Pocket penetrometer (kPa) S Standard penetration test V Shear vane (kPa) Geotechnics | Environment | Groundwater

CLIENT:

PROJECT:

LOCATION:

Catholic Healthcare

Proposed Residential Aged Care Facility

Marsh Parade, Lang Road, Hume Highway,

SURFACE LEVEL: 39.1 AHD **EASTING:** 306760 **NORTHING:** 6241804 **DIP/AZIMUTH:** 90°/-- BORE No: 7 PROJECT No: 85600.00 DATE: 23/1/2017 SHEET 1 OF 1

Casula Sampling & In Situ Testing Description Graphic Log Dynamic Penetrometer Test Water Depth 닙 of Sample (blows per 150mm) Depth Type Results & Comments (m) Strata 20 FILLING (TOPSOIL) - loosely compacted, dark <u>_ഇ</u> 0.1 brown-grey silt filling with traces of ceramic, fine sand and A/E 0.15 0 15 \rootlets FILLING - apparently moderately compacted, dark brown silt filling with traces of red-brown clay 0.5 AVE 0.55 0.55 CLAY - very stiff, brown and red-brown clay, traces of silt, 0.6-1.6m: Bulk sample 0.6 humid 1.0 1.05 A/E .œ 1.1 CLAY - very stiff, red-brown clay, trace of silt, humid 1.5 1.55 A/E 2.0 2.05 - 2 -2 Α 34 24 CLAY - very stiff to hard, red-brown clay, trace of silt, 2.5 2.55 humid A - 3 3.0 - 3 A 3.05 .9 3.1 SILTSTONE - extremely low strength, extremely weathered, light grey siltstone 3.3 Bore discontinued at 3.3m - target depth reached (auger refusal) 4 4 35-**RIG:** Bobcat DRILLER: GM LOGGED: AT CASING: Uncased TYPE OF BORING: 150mm diameter solid flight auger (TC-bit) to 3.3m WATER OBSERVATIONS: No free groundwater observed whilst augering

WATER OBSERVATIONS: No free groundwater observed whilst augering REMARKS:

	SAMPLING & IN SITU TESTING LEGEND								
A	 Auger sample 	G	Gas sample	PID	Photo ionisation detector (ppm)				
E		Р	Piston sample) Point load axial test Is(50) (MPa)				
E	ILK Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test Is(50) (MPa)				
0	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)				
	Disturbed sample	⊳	Water seep	S	Standard penetration test				
E	Environmental sample	¥	Water level	V	Shear vane (kPa)				

□ Sand Penetrometer AS1289.6.3.3 ☑ Cone Penetrometer AS1289.6.3.2

SURFACE LEVEL: 38.1 AHD EASTING: 306789 NORTHING: 6241809 DIP/AZIMUTH: 90°/--

BORE No: 8 PROJECT No: 85600.00 DATE: 23/1/2017 SHEET 1 OF 1

Casula Sampling & In Situ Testing Description Graphic Log Dynamic Penetrometer Test Water Depth 닙 of Depth Sample (blows per 150mm) Type Results & Comments (m) Strata 20 FILLING (TOPSOIL) - apparently loosely compacted, dark -20 0.1 brown-grey silt filling with traces of fine sand and rootlets A/E 0 15 0.2 FILLING - moderately compacted, dark brown silt filling with traces of red-brown clay and ironstone gravel 0.5 A/E 0.55 0.8 CLAY - very stiff, brown and red mottled clay, trace of silt, humid 1.0-2.5m: Bulk sample 1.0 A/E 1.05 1.45 A 15 1.5 CLAY - very stiff, red-brown clay, trace of silt, humid 7,17,17 S N = 341 95 - 2 -2 -92 2.3 2.35 A 2.5 2.5 CLAY - very stiff to hard, red-brown and grey clay, humid 25,14,17 N = 31 s 2.95 3 - 3 35 3.3 SILTSTONE - extremely low strength, extremely weathered, light grey siltstone 3.5 16 25/120mm S refusal __ · 3.82 3.82 Bore discontinued at 3.82m - target depth reached (auger refusal) - 4 4 .4

DRILLER: GM RIG: Bobcat TYPE OF BORING: 150mm diameter solid flight auger (TC-bit) to 3.82m WATER OBSERVATIONS: No free groundwater observed whilst augering **REMARKS:**

₽

A Auger sample B Bulk sample BLK Block sample

CDF

CLIENT:

PROJECT:

LOCATION:

Catholic Healthcare

Proposed Residential Aged Care Facility

Marsh Parade, Lang Road, Hume Highway,

LOGGED: AT

CASING: Uncased

SAMPLING & IN SITU TESTING LEGEND LECERNU PIID Photo ionisation detector (ppm) PL(A) Point load axial test Is(50) (MPa) PL(D) Point load diametral test Is(50) (MPa) pp Pocket penetrometer (kPa) S Standard penetration test V Shear vane (kPa) Gas sample Piston sample Tube sample (x mm dia.) G P U,x W Core drilling Disturbed sample Environmental sample Water sample Water seep Water level

Sand Penetrometer AS1289.6.3.3 \boxtimes Cone Penetrometer AS1289.6.3.2

SURFACE LEVEL: 39.4 AHD **EASTING:** 306753.9 **NORTHING:** 6241784.4 **DIP/AZIMUTH:** 90°/-- BORE No: 9 PROJECT No: 85600.00 DATE: 23/1/2017 SHEET 1 OF 1

Sampling & In Situ Testing Graphic Log Well Description Water Depth 닙 Construction of Depth Sample Type Results & Comments (m) Strata Details 0.02 FILLING (TOPSOIL) - brown silty clay filling with some fine igneous gravel with rootlets, ACM fragment found 0.02 PID<5 А 0.1 FILLING - brown silty clay filling with some fine igneous gravel 0.3 A* - apparently in a stiff condition 0.4 0.41 -0.4 SILTY CLAY - stiff, red-grey mottled silty clay Bore discontinued at 0.41m - hand auger refusal on stiff clay 1 -2 - 2 3 -3 -4 - 4

RIG: Hand tools TYPE OF BORING:

CLIENT:

PROJECT:

LOCATION:

Catholic Healthcare

Casula

Proposed Residential Aged Care Facility

Marsh Parade, Lang Road, Hume Highway,

DRILLER: CB/TG Hand auger LOGGED: CB

CASING: Uncased

WATER OBSERVATIONS: No free groundwater observed REMARKS: *BD1/230117 taken at 0.3m to 0.4m

 SAMPLING & IN SITU TESTING LEGEND

 A
 Auger sample
 G
 Gas sample
 PID
 Photo ionisation detector (ppm)

 B
 Bulk sample
 P
 Piston sample
 PIL(A) Point load axial test Is(50) (MPa)

 BLK
 Block sample
 U
 Tube sample (x mm dia.)
 PL(A) Point load axial test Is(50) (MPa)

 C
 Core drilling
 W
 Water sample
 pp
 Pocket penetrometer (kPa)

 D
 Disturbed sample
 P
 Water seep
 S
 Standard penetration test

 E
 Environmental sample
 ¥
 Water level
 V
 Shear vane (kPa)

SURFACE LEVEL: 42.4 AHD **EASTING:** 306719.4 **NORTHING:** 6241765.5 **DIP/AZIMUTH:** 90°/-- BORE No: 10 PROJECT No: 85600.00 DATE: 23/1/2017 SHEET 1 OF 1

		Casula	,				6241765.5 I: 90°/		SHEET 1 OF 1
		Description	jic		Sam		& In Situ Testing	Well	
RL	Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details
	0.02	FILLING (TOPSOIL) - brown silty clay filling with some	$\hat{\mathbf{x}}$	A	0.01		PID<5		-
	0.16	FILLING - brown silty clay filling with some fine igneous and ironstone gravel and tile fragments	XXX						-
-4		and ironstone gravel and tile fragments							+
		- hand auger refusal on clay filling							-
									-
	-1								-1
-									-
-									-
-4									-
-									-
-									-
									-
	-2								-2
									-
40									-
-									-
-									
-									-
	-3								-3
									-
-8									
-									-
									-
-									-
	- 4								-4
									-
38									
									+
·									

RIG: Hand tools

TYPE OF BORING: Hand auger

CLIENT:

PROJECT:

LOCATION:

Catholic Healthcare

Proposed Residential Aged Care Facility

Marsh Parade, Lang Road, Hume Highway,

DRILLER: CB/TG

LOGGED: CB

CASING: Uncased

WATER OBSERVATIONS: No free groundwater observed REMARKS: *BD2/230117 taken at 0.02m to 0.1m

 SAMPLING & IN SITU TESTING LEGEND

 A
 Auger sample
 G
 Gas sample
 PID
 Photo ionisation detector (ppm)

 B
 Bulk sample
 P
 Piston sample
 PL(A) Point load axial test Is(50) (MPa)

 BLK
 Block sample
 U,
 Tube sample (x mm dia.)
 PL(D) Point load diametral test Is(50) (MPa)

 C
 Core drilling
 W
 Water sample
 p
 Pocket penetrometer (kPa)

 D
 Disturbed sample
 V
 Water seep
 S
 Standard penetroin test

 E
 Environmental sample
 ¥
 Water level
 V
 Shear vane (kPa)

SURFACE LEVEL: 41.5 AHD **EASTING:** 306727.1 **NORTHING:** 6241730.3 **DIP/AZIMUTH:** 90°/-- BORE No: 11 PROJECT No: 85600.00 DATE: 23/1/2017 SHEET 1 OF 1

Casula		,	DIP/AZIMUTH: 90°/					SHEET 1 OF 1		
		Description	Jic	Sampling & In Situ Testing					Well	
RL	Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details	
	0.02			A	-0.02 0.1	0	PID<5		-	
-	0.2	\int FILLING - brown silty clay filling with some fine igneous \int		A	0.2 0.3		PID<5		-	
-	0.35	SILTY CLAY - stiff, brown red mottled silty clay			0.0				-	
41		Bore discontinued at 0.35m - hand auger refusal on stiff clay								
-		- hand adger relasar on sun day							-	
-									-	
	-1								-1	
-									-	
									-	
-									-	
40									-	
-									-	
	-2								-2	
-									-	
-										
-										
39									-	
-									-	
-									-	
-	-3								- 3	
	- 5								-	
-									-	
38-									-	
									-	
-									-	
-										
	-4									
$\left \right $										
È										
37									+	
ŀ										
-										
							I	1	L	

RIG: Hand tools

CLIENT:

PROJECT:

LOCATION:

Catholic Healthcare

Proposed Residential Aged Care Facility

Marsh Parade, Lang Road, Hume Highway,

DRILLER: CB/TG

LOGGED: CB

CASING: Uncased

TYPE OF BORING: Hand auger WATER OBSERVATIONS: No free groundwater observed REMARKS:

 SAMPLING & IN SITU TESTING LEGEND

 A
 Auger sample
 G
 Gas sample
 PID
 Photo ionisation detector (ppm)

 B
 Bulk sample
 P
 Piston sample
 PIL(A) Point load axial test Is(50) (MPa)

 BLK
 Block sample
 U
 Tube sample (x mm dia.)
 PL(A) Point load axial test Is(50) (MPa)

 C
 Core drilling
 W
 Water sample
 pp
 Pocket penetrometer (kPa)

 D
 Disturbed sample
 P
 Water seep
 S
 Standard penetration test

 E
 Environmental sample
 ¥
 Water level
 V
 Shear vane (kPa)

SURFACE LEVEL: 43.8 AHD **EASTING:** 306691.9 **NORTHING:** 6241718.7 **DIP/AZIMUTH:** 90°/-- BORE No: 12 PROJECT No: 85600.00 DATE: 23/1/2017 SHEET 1 OF 1

Casula Sampling & In Situ Testing Well Description Graphic Log Water Depth 닙 Construction Sample of Depth Type Results & Comments (m) Strata Details 0.0 0.01 FILLING (TOPSOIL) - brown silty clay filling with some PID<5 А 0.1 fine sand and some fine igneous gravel and rootlets А PID<5 -0.2 0.21 FILLING - brown silty clay filling with some fine igneous and ironstone gravel - stiff, grey and yellow mottled clay clumps from 0.16m Bore discontinued at 0.21m - hand auger refusal on clay filling 1 Q. -2 - 2 3 -3 .Q -4 - 4 .<u>ത</u>

RIG: Hand tools TYPE OF BORING:

CLIENT:

PROJECT:

LOCATION:

Catholic Healthcare

Proposed Residential Aged Care Facility

Marsh Parade, Lang Road, Hume Highway,

DRILLER: CB/TG

LOGGED: CB

CASING: Uncased

TYPE OF BORING: Hand auger WATER OBSERVATIONS: No free groundwater observed REMARKS:

 SAMPLING & IN SITU TESTING LEGEND

 A
 Auger sample
 G
 Gas sample
 PID
 Photo ionisation detector (ppm)

 B
 Buik sample
 P
 Piston sample
 PID
 Photo ionisation detector (ppm)

 BLK
 Block sample
 U
 Tube sample (x mm dia.)
 PL(A) Point load axial test Is(50) (MPa)

 C
 Core drilling
 W
 Water sample
 pp
 Pocket penetrometer (kPa)

 D
 Disturbed sample
 P
 Water seep
 S
 Standard penetration test

 E
 Environmental sample
 ¥
 Water level
 V
 Shear vane (kPa)

SURFACE LEVEL: 39.7 AHD **EASTING:** 306767.3 **NORTHING:** 6241733.3 **DIP/AZIMUTH:** 90°/-- BORE No: 13 PROJECT No: 85600.00 DATE: 23/1/2017 SHEET 1 OF 1

						1011	H: 90 /		SHEET I OF I	
Π	Description			Sampling & In Situ Testing					Well	
RL	Depth (m)	of	ihd og	<i>a</i>)	ء	e		Water	Construction	
	(m)	Strata	Graphic Log	Type	Depth	Sample	Results & Comments	\geq	Details	
Η	0.01				-0.01	S			Details	
-	.	$\mathbb{R}^{\text{FILLING}}(\text{TOPSOIL})$ - brown silty clay filling with some fine sand and some fine igneous gravel and rootlets		A A	0.1		PID<5 PID<5		-	
-	- 0.26 -		\otimes	A	0.2		FID~5		-	
	- 0.20	and ironstone gravel and fine brick fragments							-	
	-	- apparently stiff							-	
	-	Bore discontinued at 0.26m							-	
	.	- hand auger refusal on clay filling							-	
39	-									
Ī	.								-	
	-1									
	.									
	_									
	.								_	
	.								-	
	.								-	
	.								-	
-8	.								-	
	-								-	
-	-								-	
-	-2								-2	
	-								-	
	-								-	
	-								-	
	•								-	
	-									
	.								-	
37									[
	_									
	-3								-3	
	.									
	.								-	
	.								-	
	.								-	
	.								-	
	.								-	
-96	.								- I	
	.								t l	
	-								F	
	-4								-4	
	-								† l	
[]	•								† l	
[]									[
	.									
22	.									
	.								ļ	
	.								ļ	

RIG: Hand tools

TYPE OF BORING: Hand auger

CLIENT:

PROJECT:

LOCATION:

Catholic Healthcare

Casula

Proposed Residential Aged Care Facility

Marsh Parade, Lang Road, Hume Highway,

DRILLER: CB/TG

LOGGED: CB

CASING: Uncased

WATER OBSERVATIONS: No free groundwater observed REMARKS:

 SAMPLING & IN SITU TESTING LEGEND

 A
 Auger sample
 G
 Gas sample
 PID
 Photo ionisation detector (ppm)

 B
 Buik sample
 P
 Piston sample
 PID
 Photo ionisation detector (ppm)

 BLK
 Block sample
 U
 Tube sample (x mm dia.)
 PL(A) Point load axial test Is(50) (MPa)

 C
 Core drilling
 W
 Water sample
 pp
 Pocket penetrometer (kPa)

 D
 Disturbed sample
 P
 Water seep
 S
 Standard penetration test

 E
 Environmental sample
 ¥
 Water level
 V
 Shear vane (kPa)

SURFACE LEVEL: 39.6 AHD **EASTING:** 306774.6 **NORTHING:** 6241740.7 **DIP/AZIMUTH:** 90°/-- BORE No: 14 PROJECT No: 85600.00 DATE: 23/1/2017 SHEET 1 OF 1

		Casula				_	h. 90 /		SHEET I OF I	
		Description	<u>.</u>		Sam	pling 8	& In Situ Testing		Well	
님	Depth (m)	of	Graphic Log	Ð	£	ole	Deculto 8	Water	Construction	
	(11)	Strata	5	Type	Depth	Sample	Results & Comments	\$	Details	
\mathbb{H}	0.02			A	0.02	<u></u>	PID<5			-
}		FILLING (TOPSOIL) - brown silty clay filling with some / fine sand and some igneous gravel and some rootlets /		A	0.1		PID<5		-	
t t	0.25	FILLING - brown silty clay filling with fine igneous and / ironstone gravel and brick fragments /			0.2				-	
		Vironstone gravel and brick tragments							-	
		Bore discontinued at 0.25m - hand auger refusal on clay filling							-	
39-		hand dager foldear off oldy mining								
									-	
									-	
									-	
+ +	1								-1	
} }									-	
}									-	
}									-	
}									-	
									-	
-%									-	
									-	
	2								-2	
	2								-	
									-	
									-	
									-	
}									-	
31									-	
\mathbf{F}									-	
}									-	
									-	
	•3								-3	
									-	
									-	
-92										
$\left \right $										
$\left \right $									-	
} }	4								-4	
									F	
t t										
5										
35									[

RIG: Hand tools

TYPE OF BORING: Hand auger

CLIENT:

PROJECT:

LOCATION:

Catholic Healthcare

Casula

Proposed Residential Aged Care Facility

Marsh Parade, Lang Road, Hume Highway,

DRILLER: CB/TG

LOGGED: CB

CASING: Uncased

WATER OBSERVATIONS: No free groundwater observed REMARKS:

 SAMPLING & IN SITU TESTING LEGEND

 A
 Auger sample
 G
 Gas sample
 PID
 Photo ionisation detector (ppm)

 B
 Buik sample
 P
 Piston sample
 PID
 Photo ionisation detector (ppm)

 BLK
 Block sample
 U
 Tube sample (x mm dia.)
 PL(A) Point load axial test Is(50) (MPa)

 C
 Core drilling
 W
 Water sample
 pp
 Pocket penetrometer (kPa)

 D
 Disturbed sample
 P
 Water seep
 S
 Standard penetration test

 E
 Environmental sample
 ¥
 Water level
 V
 Shear vane (kPa)

SURFACE LEVEL: 39.1 AHD **EASTING:** 306788.2 **NORTHING:** 6241756.1 **DIP/AZIMUTH:** 90°/-- BORE No: 15 PROJECT No: 85600.00 DATE: 23/1/2017 SHEET 1 OF 1

_		Casula					6241756.1 H: 90°/		SHEET 1 OF 1
RL	Depth (m)	Description of Strata	Log	Type	Depth Depth	s guild Sample	& In Situ Testing Results & Comments	Water	Well Construction Details
39	0.01 [,] 0.1	\FILLING (TOPSOIL) - brown silty clay filling with some \Fine igneous gravel and rootlets \Fine igneous gravel and rootlets	\bigotimes	A	-0.01 0.1	S	PID<5		-
	0.3	FILLING - brown silty clay filling with some fine igneous		A	0.2 0.3		PID<5		-
		SILTY CLAY - stiff, red-brown mottled silty clay Bore discontinued at 0.3m							-
		- refusal on stiff clay							-
									-
38	-1								-1
- · ·									-
									-
									-
									-
	-2								-2
37									-
									-
									-
-									-
									-
36	- 3								-3
									-
									-
									-
									-
35	-4								-4
									-
-									

RIG: Hand tools

TYPE OF BORING: Hand auger

CLIENT:

PROJECT:

LOCATION:

Catholic Healthcare

Proposed Residential Aged Care Facility

Marsh Parade, Lang Road, Hume Highway,

DRILLER: CB/TG

LOGGED: CB

CASING: Uncased

WATER OBSERVATIONS: No free groundwater observed REMARKS:

 SAMPLING & IN SITU TESTING LEGEND

 A
 Auger sample
 G
 Gas sample
 PID
 Photo ionisation detector (ppm)

 B
 Buik sample
 P
 Piston sample
 PID
 Photo ionisation detector (ppm)

 BLK
 Block sample
 U
 Tube sample (x mm dia.)
 PL(A) Point load axial test Is(50) (MPa)

 C
 Core drilling
 W
 Water sample
 pp
 Pocket penetrometer (kPa)

 D
 Disturbed sample
 P
 Water seep
 S
 Standard penetration test

 E
 Environmental sample
 ¥
 Water level
 V
 Shear vane (kPa)

SURFACE LEVEL: 38.4 AHD **EASTING:** 306768.9 **NORTHING:** 6241788.3 **DIP/AZIMUTH:** 90°/-- BORE No: 16 PROJECT No: 85600.00 DATE: 23/1/2017 SHEET 1 OF 1

_		Casula				-	n. 90 /			
		Description	.u		Sam	pling 8	& In Situ Testing		Well	
R	Depth	of	Graphic Log	¢۵	£	ole		Water	Construction	
	(m)	Strata	U B B C B	Type	Depth	Sample	Results & Comments	≥	Details	
\vdash	0.02				0.02	Ő			Details	
-	-	☐ FILLING (TOPSOIL) - brown silty clay filling with some fine igneous gravel and rootlets	/ 🕅	A A	0.1		PID<5 PID<5		-	
ł	0.21	☐ FILLING - brown silty clay filling with some fine igneous	$\int \mathbf{K} \mathbf{X} \mathbf{X}$	~	_0.2_				-	
		\gravel	/						-	
-8	-	Bore discontinued at 0.21m							-	
	-	- hand auger refusal on clay filling							-	
	-									
	-1								-1	
	-								-	
									-	
-	-								-	
37									-	
-	-								-	
+	-								-	
									-	
	-								-	
	-									
	-2								-2	
									-	
-8	-								-	
-									-	
-	-								-	
+ +	-								-	
+ +									-	
+	-								-	
ŀ	-3								-3	
	-								-	
1	•								†	
35									[
["	.									
	.									
	.									
	.									
$\left \right $.									
$\left \right $	-4								-4	
$\left \right $.								+	
+ +	.								- I	
	-								F	
34	-								F	
	.									
[]									[
	.									
	.								ļ	

RIG: Hand tools

TYPE OF BORING: Hand auger

CLIENT:

PROJECT:

LOCATION:

Catholic Healthcare

Casula

Proposed Residential Aged Care Facility

Marsh Parade, Lang Road, Hume Highway,

DRILLER: CB/TG

LOGGED: CB

CASING: Uncased

WATER OBSERVATIONS: No free groundwater observed REMARKS:

 SAMPLING & IN SITU TESTING LEGEND

 A
 Auger sample
 G
 Gas sample
 PID
 Photo ionisation detector (ppm)

 B
 Buik sample
 P
 Piston sample
 PID
 Photo ionisation detector (ppm)

 BLK
 Block sample
 U
 Tube sample (x mm dia.)
 PL(A) Point load axial test Is(50) (MPa)

 C
 Core drilling
 W
 Water sample
 pp
 Pocket penetrometer (kPa)

 D
 Disturbed sample
 P
 Water seep
 S
 Standard penetration test

 E
 Environmental sample
 ¥
 Water level
 V
 Shear vane (kPa)

SURFACE LEVEL: 39.0 AHD **EASTING:** 306767.1 **NORTHING:** 6241771.2 **DIP/AZIMUTH:** 90°/-- BORE No: 17 PROJECT No: 85600.00 DATE: 23/1/2017 SHEET 1 OF 1

	<i>,</i>		Casula	,				6241771.2 H: 90°/		SHEET 1 OF 1
	-		Description	ji –		Sam		& In Situ Testing	ĩ	Well
RL	De (r	epth n)	of	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction
8		0.01		$\overline{\mathbf{x}}$	⊢ A	0.01	Sa	PID<5		Details
	-		FILLING (TOPSOIL) - brown silty clay filling with fine igneous gravel, rootlets	\bigotimes		0.1				-
-	-		FILLING - brown silty clay filling with some fine igneous gravel	\bigotimes						-
	-	0.5		XX	Α	0.4 0.5		PID<5		-
-	-		SILTY CLAY - brown-red mottled silty clay							-
[-									-
- 86	- - 1	1.0		1/1	A	0.9 —1.0—		PID<5		-
-	-	1.0	Bore discontinued at 1.0m - target depth reached			1.0				-
	-									-
-	-									-
-	-									
-	-									-
[-									-
37	-2									-2
-	-									-
-	-									-
-	-									-
	-									
-	-									-
36	-3									-3
	-									-
-	-									-
	-									-
-	-									-
-	-									-
2	-									
35	·4									-
	-									
$\left \right $	-									
	-									
$\left \right $	-									
	-									

RIG: Bobcat

CLIENT:

PROJECT:

LOCATION:

Catholic Healthcare

Proposed Residential Aged Care Facility

Marsh Parade, Lang Road, Hume Highway,

DRILLER: CB/TG

LOGGED: CB

CASING: Uncased

TYPE OF BORING: 150mm diameter solid flight auger (TC-bit) to to 1.01m WATER OBSERVATIONS: No free groundwater observed REMARKS:

 SAMPLING & IN SITU TESTING LEGEND

 A Auger sample
 G
 Gas sample
 PID
 Photo ionisation detector (ppm)

 B Bulk sample
 P
 Piston sample
 PL(A) Point load axial test Is(50) (MPa)

 BLK Block sample
 U
 Tube sample (x mm dia.)
 PL(D) Point load axial test Is(50) (MPa)

 C Core drilling
 W
 Water sample
 p
 Pocket penetrometer (kPa)

 D Disturbed sample
 P
 Water level
 V
 Sharar vane (kPa)

SURFACE LEVEL: 41.8 AHD **EASTING:** 306741.2 **NORTHING:** 6241742.5 DIP/AZIMUTH: 90°/--

BORE No: 18 PROJECT No: 85600.00 DATE: 23/1/2017 SHEET 1 OF 1

									1
	_	Description	Graphic Log		Sam		& In Situ Testing	<u> </u>	Well
R	Depth (m)	of	aph-	e	th	ple	Booulto 8	Water	Construction
	(11)	Strata	-G_	Type	Depth	Sample	Results & Comments	5	Details
	0.02			A	 	S	PID<5		
		FILLING - brown silty clay filling with some fine igneous			0.1				-
		gravel			0.4				
-		- mottled red-brown from 0.4m		А	0.4		PID<5		-
	0.6	CLAY - red-grey mottled silty clay							
-4									-
	-1			А	0.9 1.0		PID<5		-1
-	1.1	Bore discontinued at 1.1m							
		- target depth reached							
ŀ									
-									-
-4									
-									-
	-2								-2
+ +									-
-									-
-65									
-	-3								-3
									-
+ +									-
- 8									
$\left \right $									
	-4								-4
ŀ									
									-
									-
37									

LOGGED: CB RIG: Bobcat DRILLER: GM TYPE OF BORING: 150mm diameter solid flight auger (TC-bit) to to 1.1m WATER OBSERVATIONS: No free groundwater observed

REMARKS: *BD4/230117 taken at 0.9m to 1.0m

CLIENT:

PROJECT:

LOCATION:

Catholic Healthcare

Casula

Proposed Residential Aged Care Facility

Marsh Parade, Lang Road, Hume Highway,

SAMPLING & IN SITU TESTING LEGEND LEGEND PID Photo ionisation detector (ppm) PL(A) Point load axial test Is(50) (MPa) PL(D) Point load diametral test Is(50) (MPa) pp Pocket penetrometer (kPa) S Standard penetration test V Shear vane (kPa) Gas sample Piston sample Tube sample (x mm dia.) Water sample Water seep Water level A Auger sample B Bulk sample BLK Block sample G P U, W Core drilling Disturbed sample Environmental sample CDE ₽

CASING: Uncased

SURFACE LEVEL: 40.9 AHD **EASTING:** 306767 **NORTHING:** 6241708 **DIP/AZIMUTH:** 90°/-- BORE No: 19 PROJECT No: 85600.00 DATE: 24/1/2017 SHEET 1 OF 1

			Casula					n. 90 /		SHEET I OF I
	_		Description	jic		Sam		& In Situ Testing	5	Well
Я	Dep (m	oth 1)	of	Graphic Log	Type	Depth	ple	Results &	Water	Construction
	,	<i>`</i>	Strata	G	Tyl	Del	Sample	Results & Comments	-	Details
			FILLING (TOPSOIL) - loosely compacted, dark grey-brown silt filling with traces of sand, rootlets and	\boxtimes		0.1				-
		0.2	gravel	\bigotimes	_A/E_	0.1 0.15				-
$\left \right $			FILLING - loosely compacted, dark grey-brown silt filling with some sand and gravel and traces of rootlets	\otimes						-
			with some sand and gravel and traces of rootlets							-
t t		0.6		\otimes	_A/E_	0.5 0.55				
		0.0	CLAY - very stiff, brown-red mottled clay with traces of silt	\langle / \rangle						
										-
-4				\langle / \rangle						-
	- 1	1.0	CLAY - very stiff, red-brown clay with traces of silt	$\sqrt{7}$	A/E	1.0 1.05				-1
Į				$\langle / /$						
										-
				\langle / \rangle		1 45				-
$\left \right $		1.5	Bore discontinued at 1.5m		_AVE*_	1.45 1.5				
ţ			- target depth reached							t l
										-
-95										-
$\left \right $	-2									-2
										-
										-
										-
$\left \right $										-
ł										-
-85										-
} }	-3									-3
$\left \right $										
$\left \right $										- I
Į										ţ l
31										
	-4									-4
$\left \right $										
ţ										
										- I
$\left \right $										
										F
36										
ິ										

LOGGED: AT

 RIG:
 Bobcat
 DRILLER:
 GM

 TYPE OF BORING:
 150mm diameter solid flight auger (TC-bit) to 1.5m

 WATER OBSERVATIONS:
 No free groundwater observed whilst augering

 REMARKS:
 *BD7/240117 taken at 1.5m

CLIENT:

PROJECT:

LOCATION:

Catholic Healthcare

Casula

Proposed Residential Aged Care Facility

Marsh Parade, Lang Road, Hume Highway,

 SAMPLING & IN SITU TESTING LEGEND

 A
 Auger sample
 G
 Gas sample
 PID
 Photo ionisation detector (ppm)

 B
 Bulk sample
 P
 Piston sample
 PIL(A) Point load axial test Is(50) (MPa)

 BLK
 Block sample
 U
 Tube sample (x mm dia.)
 PL(A) Point load axial test Is(50) (MPa)

 C
 Core drilling
 W
 Water sample
 pp
 Pocket penetrometer (kPa)

 D
 Disturbed sample
 P
 Water seep
 S
 Standard penetration test

 E
 Environmental sample
 ¥
 Water level
 V
 Shear vane (kPa)

CASING: Uncased

Appendix E

Summary of Results Table

Laboratory Certificates

					1					Metals								TRH	1							BTEX											PAH							
												1	1									1													T									
				Ŧ	ation Exchange Capacity (CEC)	rsenic	admium	hromium (III+VI)	opp er	ead ead (TCLP)	fercury	lickel	inc.	10-C16	16-C34	2-NAPHTHALENE	6 - 3	10 - C14	15 - C28	29-C36 C10 - C36 (Sum of total)	otal	6-C10 less BTEX (F1)	6-C10	enzene	thylbenzene	viene (m & p)	ylene (o)	ylene Total	lalogenated Benzenes	cenaphthene	cenaphthylene	nthracene and along the const	enz(ajaritinatent enzo(a) pyrene	enzo(a) pyrene TEQ	enzo(g, h,i)perylene	hrysene	ubenz(a,h)anthracene	luoranthene enzo(b,j+k)fluoranthene	luorene	ndeno(1,2,3-c,d)pyrene	aphthalene 	nenanumene henolics Total	otal +ve PAHs	Vrene
				pH units	mea/100g	mg/kg	mg/kg m	ig/kg m	ig/kg m	e/kg mg/	 mg/kg	mg/kg	mg/kg	mg/kg m	g/kg mg	/kg mg/	kg mg/kg	mg/kg r	ng/kg me	g/kg mg/	/kg mg/ki	g mg/kg	mg/kg	mg/kg m	ig/kg mg	- × /kg mg/kg	g mg/kg m	ng/kg	mg/kg	mg/kg	mg/kg r	ng/kg mg	/kg mg/k	kg mg/kr	e me/ke	mg/kg	mg/kg mg	z/kg mg/k	kg mg/kg	mg/kg r	ng/kg mg	/kg mg/k	g mg/kg	mg/kg
EQL				0.1						1 0.03			1														1		0.1								0.1 0.							0.1
NEPM 2013 H	ILs Res A and I	HSL A (direct contact)		-	-	100	20 1	100 6	5000 3	- 00	40	400	7400	- 4	500 63	00 330	0 -	-	-		-	4400		100 4			- 12	2,000	10	-	-	-	/	3	1 - 7	· · /			-	- 1	1400 -	- 100	300	
NEPM 2013,	Res A/B Soil HS	L for Vapour Intrusion	, Silty Soil, 0-2 m	-		-		-	-		-	-	-	-	-	- 230) -	-	-			40	-	0.6	NL 39	90 -	-	95	-		-	-				<u> </u>		<u> </u>	-		4 -		-	-
NEPM 2013-	EL and ESL, 0-2	2 m, for Urban Res, SIlt	ty Soil		<u> </u>	100	- 4	10 1	170 1	100 -		200	390	- 1	300 56	00 120) - C	-	-			180		65 1	125 10)5 -		45	-				0.7								170 -			
		nagement Limits in Re-	s / Parkland, Silty Soil	-	· ·	-				<u> </u>	-	-	-	1000 3			-	-	-		-	-	800	-	-	-	-	-	-	-	-	-		4	<u> </u>				-				-	
	neral Solid Wa			-	· ·	100	20 1	100		100 -	4	40	-	-			650	-	-	- 10,0	- 000		-	10 €	500 28	38 -	- 1	1000	-	-	-			0.8	<u>4</u> /	┢╧╋		4	-	┢╍┾┙	4 -		-	
	neral Solid Wa 2) - For Natura	aste (SCC1 and TCLP1)		-	•	-	-	-	- 190 <2-	.500 5	-	- 2-400	-	-	-		-	-	-			•	-	-	- 0.1			-	-	-	-		<u> </u>	4	<u>+</u>			· · ·	-				-	
ANZECC (199	2) - For Natura	i Materiai		-	-	0.2-30	J.04-2 0.5	<u>-110 1-</u>	190 <2-	-200 -	0.001-0.1	Z-400	2-180	-	-		-	-	-		-	-	-	0.05-1	- 0	-1 -		-	-	-	-					<u> </u>			-			- -	-	-
Field ID	Material	Sample Depth (m b	gl) Sampled Date																																									
BH1	Filling	0.1	24/01/2017		· ·	8	<0.4	20	25 1	100 <0.03	0.1	8	96	<50 <	100 <1	00 <50) <25	<50	<100 <1	100 <25	50 <50	<25	<25	<0.2	<1 <0	.5 <2	<1	<3	<0.1	< 0.1	<0.1	<0.1 <0	0.1 0.0F	ó <0.5	<0.1	<0.1	<0.1 0.	.2 <0.2	2 <0.1	<0.1	<0.1 0	.1 <5	0.46	0.1
BH1	Natural	0.5	24/01/2017	5.3	13	6	<0.4 2	22	16 2	22 -	<0.1	7															<1		-								<0.1 <0							<0.1
BH2	Filling	0.5	24/01/2017	-	•	9	<0.4 2	24	21 2	24 -	<0.1	7	26	<50 <	100 <1	00 <50) <25	<50	<100 <1	100 <25	50 <50	<25	<25	<0.2	<1 <0	.5 <2	<1	<3	<0.1	< 0.1	<0.1	<0.1 <0	J.1 <0.0'	/5 <0.5	<0.1	<0.1	<0.1 <0	J.1 <0.2	2 <0.1	<0.1	<0.1 <0).1 <5	0	<0.1
BH3	Filling	0.1	24/01/2017	-	•	<4	<0.4	9	8 2	29 -	<0.1	3	28	<50 <	100 <1	00 <50) <25	<50	<100 <1	100 <25	50 <50	<25	<25	<0.2	<1 <0	.5 <2	<1	<3	<0.1	<0.1	<0.1	<0.1 <0	J.1 <0.0"	5 <0.5	<0.1	<0.1	<0.1 <0	J.1 <0.2	2 <0.1	<0.1	<0.1 <0).1 <5	0	<0.1
BH4	Filling	0.1	23/01/2017	-	-	5	<0.4	9	18 1	130 0.04			92	<50 <													<1		-								<0.1 <0						0.2	<0.1
BH4	Natural	1.5	23/01/2017	-	•		<0.4 1			17 -	<0.1		26	<50 <	100 <1	00 <50) <25	<50	<100 <1	100 <25	50 <50	<25	<25	<0.2	<1 <0	.5 <2	<1	<3	-	_						+	<0.1 <0				<0.1 <0).1 -		<0.1
BD5/230117	Natural	1.5	23/01/2017	-	· ·		<0.4	-		16 -	<0.1	4	24	-			-	-	-			-	-	-			-	-	-								<0.1 <0				<0.1 <0.			<0.1
BH5	Filling	0.1	24/01/2017	-	•		0.7 1		-	200 <0.03			290) <25							<0.2		.5 <2			-								<0.1 <0							<0.1
BH6A	Filling	0.5	23/01/2017		•		<0.4 2		20 2		<0.1																<1	<3	<0.1								<0.1 <0							
BH7	Filling	0.5	23/01/2017	5.5	11		<0.4 2			16 -	<0.1	6	110	<50 <		00 <50				100 <25						.5 <2		<3	-								<0.1 <0							<0.1
BH7	Natural Filling	0.5	23/01/2017 23/01/2017	-	· ·		<0.4		14 1 14 2		<0.1		13 68) <25) <25									.5 <2	<1 <1		<0.1								<0.1 <0							<0.1
BHS	Natural	1	23/01/2017				<0.4 2		13 2		<0.1		16				_					_					<1		-								<0.1 <0							<0.1
BH9	Material	0.01-0.02	23/01/2017	-	-	-	-	-			-	-	-	-			-	-			-	-	-	-			-	-	-	-	-			-	-	-	-		-	-			-	-
BH9	Filling	0.02-0.1	23/01/2017			9	<0.4 2	20	43 5	59 -	0.2	7	98	<50 <	100 <1	00 <50) <25	<50	<100 <1	100 <25	50 <50	<25	<25	<0.2	<1 <0	.5 <2	<1	<3	<0.1	<0.1	<0.1	<0.1 <0	0.1 <0.0	5 <0.5	<0.1	<0.1	<0.1 <0	0.1 <0.2	2 <0.1	<0.1	<0.1 <0).1 <5	0	<0.1
BH10	Filling	0.02-0.1	23/01/2017	-	· ·	11	<0.4 2			180 0.04			160	<50 <) <25					_			<1 <0				<0.1	_				_	_		<0.1 <0		_				_	<0.1
BD2/230117	Filling	0.02-0.1	23/01/2017	-	-	9	<0.4 2	20	16 1	100 -	<0.1	6	100	-	-		-	-	-		-	-	-	-	-		-	-	-								<0.1 <0							<0.1
BH11	Filling	0.02-0.1	23/01/2017	6.5	12	6	<0.4 1	19	14 3	34 -	<0.1	7	79	<50 <	100 <1	00 <50) <25	<50	<100 <1	100 <25	50 <50	<25	<25	<0.2	<1 <0	.5 <2	<1	<3	<0.1	<0.1	<0.1	<0.1 <0	.1 <0.0	5 <0.5	<0.1	<0.1	<0.1 <0	J.1 <0.2	2 <0.1	<0.1	<0.1 <0).1 <5	0	<0.1
BH12	Filling	0.1-0.2	23/01/2017	-	-		<0.4 2		11 3		<0.1		36			00 <50									<1 <0	.5 <2	<1	<3	-								<0.1 0.							0.2
BH13	Filling	0.1-0.2	23/01/2017	· ·	· ·	20				77 -	<0.1		160	<50 <			_			100 <25		_				.5 <2		<3	<0.1	_				_	_		<0.1 <0		_				_	<0.1
BH14	Filling	0.02-0.1	23/01/2017	-	· ·		<0.4 2			42 -	<0.1		63	<50 <		00 <50				100 <25				<0.2		.5 <2			<0.1								<0.1 <0).1 <5		<0.1
BH15	Filling	0.01-0.1	23/01/2017	-	· ·		0.6 2		26 7		<0.1		190			_	_					_					<1		-								<0.1 <0							<0.1
BH16	Filling	0.1-0.2	23/01/2017	-	· ·					87 -	<0.1		110	<50 <		00 <50				100 <25						.5 <2		<3	-								<0.1 <0				<0.1 <0.			<0.1
BH17 BH17	Filling	0.4-0.5	23/01/2017 23/01/2017	- 5.5	- 14		<0.4 2		-	45 - 17 -	<0.1	6	58	<50 <		00 <50				100 <25				<0.2		.5 <2	<1 <1		-								<0.1 <0				<0.1 <0.			<0.1
BH17	Filling	0.02-0.1		5.5	14		<0.4 1		13 1		<0.1		14	<50 <) <25									.5 <2			-	_						+	<0.1 <0						_	<0.1
BH18 BH18	Natural	0.02-0.1	23/01/2017 23/01/2017				<0.4 2			18 -	<0.1		21	<50 <) <25									.5 <2			-								<0.1 <0							<0.1
BD4/230117	Natural	0.9-1	23/01/2017	-			<0.4		16 1	-	<0.1		19				-		- 00 (1								-		-								<0.1 <0							<0.1
BH19	Filling	0.5	24/01/2017	-			<0.4	-		23 -		5				00 <50			<100 <1			<25	<25	<0.2	<1 <0	.5 <2	<1	<3	-								<0.1 <0							<0.1
		12.2	, ,,							<u> </u>																													1					

* ND - Non Detect

		Polyc	hlorina	ed Biph	enyls												Organoc	hlorine F	Pesticide	s												Org	anopho	sphoro	us Pestic	ides				
Arochlor 1016	Arochlor 1221	Arochlor 1232	Arochlor 1242	Arochlor 1248	Arochlor 1254	Arochlor 1260	PCBs (Sum of total)	4,4-DDE	a-BHC	Aldrin	Aldrin + Dieldrin	р-внс	Chlordane (cis)	Chlordane (trans)	d-внс	DDD	DDT	DDT+DDE+DDD	Dieldrin	Endosulfan I	Endosulfan II	Endosulfan sulphate	Endrin	Endrin aldehyde	g-BHC (Lindane)	Heptachlor	Heptachlor epoxide	Methoxychlor	Azinophos methyl	Bromophos-ethyl	Chlorpy ri fos	Chlorpy ri fos-methy l	Diazinon	Dichlorvos	Dimethoate	Ethion	Fenitrothion	Malathion	Ronnel	Parathion
mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/k							
0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1		0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
-	-	-	-	-	-	-	1	-	-	-	6	-	5	50	-	-	-	240	-	2	70	-	10	-	-	6	-	300	-	-		-	-	-	-	-	-	-	/	-
- 1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	T		-
- 1	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	180	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			-
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		1	-

			Polyc	chlorinated B	iphenyls									Orga	nochlorine	Pesticide	s										Orgai	nophosp	phorous Pestic	ides			
																								1			Ť						
	Arochlor 1016	Arochlor 1221	Arochlor 1232	Arochlor 1242 Arochlor 1248	Arochlor 1254	lor 12	PCBs (Sum of total) 4.4-DDE	a-BHC	Aldrin	Aldrin + Dieldrin A Buc	chordane (cis)	Chlordane (trans)	d-BHC	DDD	DDT+DDD	Dieldrin	Endosulfan I	Endosulfan II	Endosulfan sulphate	Endrin Endrin aldehyde	g-BHC (Lindane)	Heptachlor	Heptachlor epoxide Methoxychlor	Azinophos methyl	Bromoph os-ethy l	Chlorpyrifos	Chlorpy ri fos-methy l	Diazinon	Dichlorvos Dimethoate	Ethion Fenitrothion	Malathion Ronnel	Parathion	As best tos
																														mg/kg mg/kg		kg mg/kg	g/kg
EQL	0.1	0.1	0.1	0.1 0.1	1 0.1	0.1 (0.1 0.1	1 0.1	0.1	0		-	0.1 (0.1 0.	.1 0.1						1 0.1	0.1			0.1	0.1	0.1	0.1	0.1 0.1	0.1 0.1	0.1 0.1	0.1	0.1
NEPM 2013 HILs Res A and HSL A (direct contact)	-	-	-		-	-	1 -	-	-	6 ·		50	-		- 240	-	27	0	- 1	LO -		6	- 300) -	-		-	-				-	No Detect
NEPM 2013, Res A/B Soil HSL for Vapour Intrusion, Silty Soil, 0-2 m	-	-	-		-	-		-				-	-			-	-	-			-	-		-	-	-	-	-				-	-
NEPM 2013- EIL and ESL, 0-2 m, for Urban Res, Slity Soil													-	- 18	50 -					-								-					
NEPM 2013 Table 1B(7) Management Limits in Res / Parkland, Silty Soil	-	-			-	-		-	-	-	-	-	-	-	-	-	-	-	-			-		-	-	-	-	-					-
NSW 2014 General Solid Waste (CT1)	-		•		-	-		-					-					-				-			-	4	-	-	- 10,000			· ·	No Detect
NSW 2014 General Solid Waste (SCC1 and TCLP1)	-	-	•		-	-		-					-			-		-				-			-	-	-	-					-
ANZECC (1992) - For Natural Material	-	-	-			-		-			· ·	-	- 0.	95-5 -	- 0.03-0.	.5 -	-	-				-		-	-	-	-	-					-
Field_ID Material Sample Depth (m bgl) Sampled Date BH1 Filling 0.1 24/01/2017		1 .0.4	0.1		1 0 1		0.1 0	4 0 4		0.2	4	.0.1	0.4	0.4	1.1.1.0.1		0.4	-0.4 L	.0.1	0.4	4	0.1	0.1 0	1 0 1	0.1	0.4	-0.4 L	0.4	.0.1 .0.1			1 .0.1	
	<0.1	<0.1	<0.1	<0.1 <0.	.1 <0.1	<0.1 <	0.1 <0.	1 <0.1	<0.1 <	0.2 <0	0.1 <0.1	<0.1	<0.1 <	0.1 <0	0.1 <0.1	<0.1	<0.1	<0.1	<0.1 <0	0.1 <0.	.1 <0.1	<0.1	<0.1 <0.	1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.	1 <0.1	<0.1
BH1 Natural 0.5 24/01/2017		-	-			-		-	-			-	-			-	-	-				-			-	-	-	-					-
BH2 Filling 0.5 24/01/2017				<0.1 <0.					<0.1 <												.1 <0.1									<0.1 <0.1			<0.1
BH3 Filling 0.1 24/01/2017	<0.1	<0.1	<0.1	<0.1 <0.	.1 <0.1	<0.1 <	0.1 <0.	1 <0.1	<0.1 <	0.2 <0	0.1 <0.1	<0.1	<0.1 <	:0.1 <0).1 <0.1	<0.1	<0.1	<0.1	<0.1 <0	0.1 <0.	.1 <0.1	<0.1	<0.1 <0.	1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.		<0.1
BH4 Filling 0.1 23/01/2017	· ·	-	-		-	-		-				-	-			-	-	-				-		· ·	-	-	-	-				-	<0.1
BH4 Natural 1.5 23/01/2017	· ·	-	-		-	-		-				-	-			-	-	-			-	-		· ·	-	-	-	-					-
BD5/230117 Natural 1.5 23/01/2017	· ·	-	-		-	-		-	· ·				-			-	-	-				-		· ·	-	-	-	-					-
BH5 Filling 0.1 24/01/2017	· ·	-	-		-	-		-				-	-			-	-	-			-	-		· ·	-	-	-	-					<0.1
BH6A Filling 0.5 23/01/2017	<0.1	<0.1	<0.1		.1 <0.1	<0.1 <	0.1 <0.	1 <0.1	<0.1 <	0.2 <0	0.1 <0.1	<0.1	<0.1 <).1 <0.1	<0.1	<0.1	<0.1	<0.1 <0	0.1 <0.	.1 <0.1	<0.1	<0.1 <0.		<0.1	<0.1	<0.1	-	<0.1 <0.1	<0.1 <0.1	<0.1 <0.		<0.1
BH7 Filling 0.5 23/01/2017	· ·	-	-		-	-		-	· ·				-			-	-	-				-		· ·	-	-	-	-				_	<0.1
BH7 Natural 1.5 23/01/2017	· ·	_	-			-		-	-			-	-			-	-	-				-		· ·	-	-	-	-					-
BH8 Filling 0.5 23/01/2017		<0.1	<0.1			<0.1 <	0.1 <0.	1 <0.1		0.2 <0	0.1 <0.1	<0.1	<0.1 <).1 <0.1	<0.1	<0.1	<0.1	<0.1 <0	0.1 <0.	.1 <0.1	<0.1	<0.1 <0.		<0.1	<0.1	<0.1		<0.1 <0.1		<0.1 <0.		<0.1
BH8 Natural 1 23/01/2017	· ·		-		_	-		-	-			-	-			-	-	-				-		· ·	-	-	-	-				_	-
BH9 Material 0.01-0.02 23/01/2017		-	-		-	-		-	-			-	-			-	-	-			-	-			-	-	-	-				-	chrysotile and amosite asbestos detected
BH9 Filling 0.02-0.1 23/01/2017	<0.1	<0.1	<0.1	<0.1 <0.	.1 <0.1	<0.1 <	0.1 <0.	1 <0.1	<0.1 <	0.2 <0	0.1 <0.1	<0.1	<0.1 <	:0.1 <0).1 <0.1	<0.1	<0.1	<0.1	<0.1 <0	0.1 <0.	.1 <0.1	<0.1	<0.1 <0.	1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.	1 <0.1	<0.1
BH10 Filling 0.02-0.1 23/01/2017	<0.1	< 0.1	<0.1	<0.1 <0.	.1 <0.1	<0.1 <	0.1 <0.	1 <0.1	<0.1 <	0.2 <0	0.1 <0.1	<0.1	<0.1 <	:0.1 <0).1 <0.1	<0.1	<0.1	<0.1	<0.1 <0	0.1 <0.	.1 <0.1	<0.1	<0.1 <0.	1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.	1 <0.1	<0.1
BD2/230117 Filling 0.02-0.1 23/01/2017	-	-	-		-	-		-				<u> </u>	-			-	<u> </u>	- 1				-			-	- T	-	-					-
BH11 Filling 0.02-0.1 23/01/2017	<0.1	<0.1	<0.1	<0.1 <0.	.1 <0.1	<0.1 <	0.1 <0	1 <0.1	<0.1 <	0.2 <0	0.1 <0.1	<0.1	<0.1 <	:0.1 <0).1 <0.1	<0.1	<0.1	<0.1	<0.1 <0	0.1 <0.	.1 <0.1	<0.1	<0.1 <0.	1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.	1 <0.1	<0.1
BH12 Filling 0.1-0.2 23/01/2017	-	-	-		-	-		-	-			-	-			-	-	-			-	-		-	-	-	-	-				-	<0.1
BH13 Filling 0.1-0.2 23/01/2017	<0.1	<0.1	<0.1	<0.1 <0.	.1 <0.1	<0.1 <	0.1 <0.	1 <0.1	<0.1 <	0.2 <0	0.1 <0.1	<0.1	<0.1 <	:0.1 <0).1 <0.1	<0.1	<0.1	<0.1	<0.1 <0	0.1 <0.	.1 <0.1	<0.1	<0.1 <0.	1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.	1 <0.1	<0.1
BH14 Filling 0.02-0.1 23/01/2017	<0.1	<0.1	<0.1	<0.1 <0.	1 <0.1	<0.1 <	0.1 <0	1 <0.1	<0.1 <	0.2 <0	0.1 <0.1	<0.1	<0.1 <	<0.1 <0	0.1 <0.1	<0.1	<0.1	<0.1	<0.1 <0	0.1 <0.	.1 <0.1	<0.1	<0.1 <0.	1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.	1 <0.1	<0.1
BH15 Filling 0.01-0.1 23/01/2017	-	-	-		-	-		-	-	-		-	-			-	-	-			-	-		-	-	-	-	-				-	<0.1
BH16 Filling 0.1-0.2 23/01/2017	-	-	-		-	-		-	-	-		-	-			-	-	-			-	-		-	-	-	-	-				-	<0.1
BH17 Filling 0.4-0.5 23/01/2017	-	-	-		-	-		-	-			-	-			-	-	-			-	-		-	-	-	-	-				-	<0.1
BH17 Natural 0.9-1 23/01/2017	-	-	-		-	-		-	-			-	-			-	-	-			-	-		-	-	-	-	-				-	-
BH18 Filling 0.02-0.1 23/01/2017	-	-	-		-	-		-	-	-		-	-			-	-	-			-	-		-	-	-	-	-		<u> </u>		-	<0.1
BH18 Natural 0.9-1 23/01/2017	-	-	-		-	-		-	-	-		-	-			-	-	-			-	-		-	-	-	-	-				-	-
BD4/230117 Natural 0.9-1 23/01/2017	-	-	-		-	-		-	-	-		-	-			-	-	-			-	-		-	-	-	-	-				-	-
BH19 Filling 0.5 24/01/2017	-	-	-		-	-		-	-			-	-			-	-	-			-	-		-	-	-	-	-				-	<0.1

* ND - Non Detect

email: sydney@envirolab.com.au envirolab.com.au

Envirolab Services Pty Ltd - Sydney | ABN 37 112 535 645

160839

Client:		
Douglas Partners Pty Ltd		
96 Hermitage Rd		
West Ryde		
NSW 2114		
Attention: David Holden		
Sample log in details:		
Your Reference:	85600.00, Casula	
No. of samples:	28 soils 1 material	
Date samples received / completed instructions received	25/01/17 /	25/01/17
Analysis Details:		

CERTIFICATE OF ANALYSIS

Please refer to the following pages for results, methodology summary and quality control data. Samples were analysed as received from the client. Results relate specifically to the samples as received. Results are reported on a dry weight basis for solids and on an as received basis for other matrices. *Please refer to the last page of this report for any comments relating to the results.*

Report Details:

 Date results requested by: / Issue Date:
 2/02/17
 / 2/02/17

 Date of Preliminary Report:
 Not Issued

 NATA accreditation number 2901. This document shall not be reproduced except in full.

 Accredited for compliance with ISO/IEC 17025 - Testing

 Tests not covered by NATA are denoted with *.

Results Approved By:

David Springer General Manager

ACCREDITED FOR TECHNICAL COMPETENCE

vTRH(C6-C10)/BTEXNin Soil Our Reference: Your Reference	UNITS 	160839-1 BH1	160839-2 BH1	160839-3 BH2	160839-4 BH3	160839-5 BH4
Depth Date Sampled Type of sample		0.1 24/01/2017 Soil	0.5 24/01/2017 Soil	0.5 24/01/2017 Soil	0.1 24/01/2017 Soil	0.1 23/01/2017 Soil
Date extracted	-	30/01/2017	30/01/2017	30/01/2017	30/01/2017	30/01/2017
Date analysed	-	01/02/2017	01/02/2017	01/02/2017	01/02/2017	01/02/2017
TRHC6 - C9	mg/kg	<25	<25	<25	<25	<25
TRHC6 - C10	mg/kg	<25	<25	<25	<25	<25
vTPHC6 - C10 less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	115	113	119	119	119

vTRH(C6-C10)/BTEXN in Soil Our Reference:	UNITS	160839-6	160839-7	160839-8	160839-9	160839-10
	UNITS					
Your Reference		BH4	BH5	BH6A	BH7	BH7
	-					
Depth		1.5	0.1	0.5	0.5	1.5
Date Sampled		23/01/2017	24/01/2017	23/01/2017	23/01/2017	23/01/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	30/01/2017	30/01/2017	30/01/2017	30/01/2017	30/01/2017
Date analysed	-	01/02/2017	01/02/2017	01/02/2017	01/02/2017	01/02/2017
TRHC6 - C9	mg/kg	<25	<25	<25	<25	<25
TRHC6 - C10	mg/kg	<25	<25	<25	<25	<25
vTPHC6 - C10 less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	115	115	115	119	119

	1					
vTRH(C6-C10)/BTEXN in Soil		100000 11	100000 10	100000 10	100000 11	100000 15
Our Reference: Your Reference	UNITS	160839-11 BH8	160839-12 BH8	160839-13 BH9	160839-14 BH10	160839-15 BH11
four Reference		DHO	DHO	DUA	DIIU	DUII
Depth		0.5	1	0.02-0.1	0.02-0.1	0.02-0.1
Date Sampled		23/01/2017	23/01/2017	23/01/2017	23/01/2017	23/01/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	30/01/2017	30/01/2017	30/01/2017	30/01/2017	30/01/2017
Date analysed	-	01/02/2017	01/02/2017	01/02/2017	01/02/2017	01/02/2017
TRHC6 - C9	mg/kg	<25	<25	<25	<25	<25
TRHC6 - C10	mg/kg	<25	<25	<25	<25	<25
vTPHC6 - C10 less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	117	126	126	104	105
					[
vTRH(C6-C10)/BTEXN in Soil		160820 16	160920 17	160820 18	160920 10	160820.20
Our Reference: Your Reference	UNITS	160839-16 BH12	160839-17 BH13	160839-18 BH14	160839-19 BH15	160839-20 BH16
Tour Reference	-	DITIZ	DITIS	Dilla	BIIIS	Dirio
Depth		0.1-0.2	0.1-0.2	0.02-0.1	0.01-0.1	0.1-0.2
Date Sampled		23/01/2017	23/01/2017	23/01/2017	23/01/2017	23/01/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	30/01/2017	30/01/2017	30/01/2017	30/01/2017	30/01/2017
Date analysed	-	01/02/2017	01/02/2017	01/02/2017	01/02/2017	01/02/2017
TRHC6 - C9	mg/kg	<25	<25	<25	<25	<25
TRHC6 - C10	mg/kg	<25	<25	<25	<25	<25
vTPHC6 - C10 less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	107	109	106	104	107

vTRH(C6-C10)/BTEXNin Soil Our Reference: Your Reference	UNITS 	160839-21 BH17	160839-22 BH17	160839-23 BH18	160839-24 BH18	160839-25 BH19
Depth Date Sampled Type of sample		0.4-0.5 23/01/2017 Soil	0.9-1.0 23/01/2017 Soil	0.02-0.1 23/01/2017 Soil	0.9-1.0 23/01/2017 Soil	0.5 24/01/2017 Soil
Date extracted	-	30/01/2017	30/01/2017	30/01/2017	30/01/2017	30/01/2017
Date analysed	-	01/02/2017	01/02/2017	01/02/2017	01/02/2017	01/02/2017
TRHC6 - C9	mg/kg	<25	<25	<25	<25	<25
TRHC6 - C10	mg/kg	<25	<25	<25	<25	<25
vTPHC6 - C10 less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	87	83	85	84	85

svTRH (C10-C40) in Soil Our Reference:	UNITS	160839-1	160839-2	160839-3	160839-4	160839-5
Your Reference		BH1	BH1	BH2	BH3	BH4
	-				2.10	
Depth		0.1	0.5	0.5	0.1	0.1
Date Sampled		24/01/2017	24/01/2017	24/01/2017	24/01/2017	23/01/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	30/01/2017	30/01/2017	30/01/2017	30/01/2017	30/01/2017
Date analysed	-	30/01/2017	31/01/2017	31/01/2017	31/01/2017	31/01/2017
TRHC 10 - C 14	mg/kg	<50	<50	<50	<50	<50
TRHC 15 - C28	mg/kg	<100	<100	<100	<100	<100
TRHC29 - C36	mg/kg	<100	<100	<100	<100	<100
TRH>C10-C16	mg/kg	<50	<50	<50	<50	<50
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH>C16-C34	mg/kg	<100	<100	<100	<100	<100
TRH>C34-C40	mg/kg	<100	<100	<100	<100	<100
Total+veTRH(>C10-C40)	mg/kg	<50	<50	<50	<50	<50
Surrogate o-Terphenyl	%	101	101	105	102	102
					Γ	I
svTRH (C10-C40) in Soil						
Our Reference:	UNITS	160839-6	160839-7	160839-8	160839-9	160839-10
Your Reference		BH4	BH5	BH6A	BH7	BH7
Depth		1.5	0.1	0.5	0.5	1.5
DateSampled		23/01/2017	24/01/2017	23/01/2017	23/01/2017	23/01/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	30/01/2017	30/01/2017	30/01/2017	30/01/2017	30/01/2017
Date analysed	-	31/01/2017	31/01/2017	31/01/2017	31/01/2017	31/01/2017
TRHC 10 - C 14	mg/kg	<50	<50	<50	<50	<50
TRHC 15 - C28	mg/kg	<100	<100	<100	<100	<100
TRHC29 - C36	mg/kg	<100	<100	<100	<100	<100
TRH>C10-C16	mg/kg	<50	<50	<50	<50	<50
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH>C16-C34	mg/kg	<100	<100	<100	<100	<100
TRH>C34-C40	mg/kg	<100	<100	<100	<100	<100
	-					
Total+veTRH(>C10-C40)	mg/kg	<50	<50	<50	<50	<50

svTRH (C10-C40) in Soil						
Our Reference:	UNITS	160839-11	160839-12	160839-13	160839-14	160839-15
Your Reference		BH8	BH8	BH9	BH10	BH11
	-	2.10	2.10	2.10	2	
Depth		0.5	1	0.02-0.1	0.02-0.1	0.02-0.1
Date Sampled		23/01/2017	23/01/2017	23/01/2017	23/01/2017	23/01/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	30/01/2017	30/01/2017	30/01/2017	30/01/2017	30/01/2017
Date analysed	-	31/01/2017	31/01/2017	31/01/2017	31/01/2017	31/01/2017
TRHC 10 - C14	mg/kg	<50	<50	<50	<50	<50
TRHC 15 - C28	mg/kg	<100	<100	<100	<100	<100
TRHC29 - C36	mg/kg	<100	<100	<100	<100	<100
TRH>C10-C16	mg/kg	<50	<50	<50	<50	<50
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH>C16-C34	mg/kg	<100	<100	<100	<100	<100
TRH>C34-C40	mg/kg	<100	<100	<100	<100	<100
Total+veTRH(>C10-C40)	mg/kg	<50	<50	<50	<50	<50
Surrogate o-Terphenyl	%	107	107	109	106	112
svTRH (C10-C40) in Soil						
Our Reference:	UNITS	160839-16	160839-17	160839-18	160839-19	160839-20
Your Reference		BH12	BH13	BH14	BH15	BH16
Depth		0.1-0.2	0.1-0.2	0.02-0.1	0.01-0.1	0.1-0.2
Date Sampled		23/01/2017	23/01/2017	23/01/2017	23/01/2017	23/01/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted		30/01/2017	30/01/2017	30/01/2017	30/01/2017	30/01/2017
Date analysed	_	31/01/2017	31/01/2017	31/01/2017	31/01/2017	31/01/2017
TRHC 10 - C14	mg/kg	<50	<50	<50	<50	<50
TRHC 15 - C28	mg/kg	<100	<100	<100	<100	<100
TRHC 29 - C36	mg/kg	<100	<100	<100	<100	<100
TRH>C10-C16	mg/kg	<50	<50	<50	<50	<50
TRH>C10 - C16 less	mg/kg	<50	<50	<50	<50	<50
Naphthalene (F2)	55					
TRH>C16-C34	mg/kg	<100	<100	<100	<100	<100
TRH>C34-C40	mg/kg	<100	<100	<100	<100	<100
Total+veTRH(>C10-C40)	mg/kg	<50	<50	<50	<50	<50
Surrogate o-Terphenyl	%	106	106	106	112	111

Client Reference: 85600.00, Casula

	1					
svTRH (C10-C40) in Soil						
Our Reference:	UNITS	160839-21	160839-22	160839-23	160839-24	160839-25
Your Reference		BH17	BH17	BH18	BH18	BH19
	-	0405	0.0.4.0	0.00.0.4	0.0.4.0	0.5
Depth		0.4-0.5	0.9-1.0	0.02-0.1	0.9-1.0	0.5
Date Sampled		23/01/2017	23/01/2017	23/01/2017	23/01/2017	24/01/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	30/01/2017	30/01/2017	30/01/2017	30/01/2017	30/01/2017
Date analysed	-	31/01/2017	31/01/2017	31/01/2017	31/01/2017	31/01/2017
TRHC 10 - C 14	mg/kg	<50	<50	<50	<50	<50
TRHC 15 - C28	mg/kg	<100	<100	<100	<100	<100
TRHC29 - C36	mg/kg	<100	<100	<100	<100	<100
TRH>C10-C16	mg/kg	<50	<50	<50	<50	<50
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH>C16-C34	mg/kg	<100	<100	<100	<100	<100
TRH>C34-C40	mg/kg	<100	<100	<100	<100	<100
Total+veTRH(>C10-C40)	mg/kg	<50	<50	<50	<50	<50
Surrogate o-Terphenyl	%	109	110	111	109	111

PAHs in Soil						
Our Reference:	UNITS	160839-1	160839-2	160839-3	160839-4	160839-5
Your Reference		BH1	BH1	BH2	BH3	BH4
Depth	-	0.1	0.5	0.5	0.1	0.1
Date Sampled		24/01/2017	24/01/2017	24/01/2017	24/01/2017	23/01/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	30/01/2017	30/01/2017	30/01/2017	30/01/2017	30/01/2017
Date analysed	-	31/01/2017	31/01/2017	31/01/2017	31/01/2017	31/01/2017
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	<0.1	<0.1	<0.1	0.2
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.2	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	0.06	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Total +ve PAH's	mg/kg	0.5	<0.05	<0.05	<0.05	0.2
Surrogate p-Terphenyl-d14	%	98	97	91	97	96

PAHs in Soil						
Our Reference:	UNITS	160839-6	160839-7	160839-8	160839-9	160839-10
Your Reference		BH4	BH5	BH6A	BH7	BH7
Depth	-	1.5	0.1	0.5	0.5	1.5
Date Sampled		23/01/2017	24/01/2017	23/01/2017	23/01/2017	23/01/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	30/01/2017	30/01/2017	30/01/2017	30/01/2017	30/01/2017
Date analysed	-	31/01/2017	31/01/2017	31/01/2017	31/01/2017	31/01/2017
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	0.2	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Total +ve PAH's	mg/kg	<0.05	0.2	<0.05	<0.05	<0.05
Surrogate p-Terphenyl-d14	%	93	96	94	103	106

PAHs in Soil						
Our Reference:	UNITS	160839-11	160839-12	160839-13	160839-14	160839-15
Your Reference		BH8	BH8	BH9	BH10	BH11
Depth	-	0.5	1	0.02-0.1	0.02-0.1	0.02-0.1
Date Sampled		23/01/2017	23/01/2017	23/01/2017	23/01/2017	23/01/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	30/01/2017	30/01/2017	30/01/2017	30/01/2017	30/01/2017
Date analysed	-	31/01/2017	31/01/2017	31/01/2017	31/01/2017	31/01/2017
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Total +ve PAH's	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Surrogate p-Terphenyl-d14	%	119	96	102	107	87

PAHs in Soil						
Our Reference:	UNITS	160839-16	160839-17	160839-18	160839-19	160839-20
Your Reference		BH12	BH13	BH14	BH15	BH16
Depth	-	0.1-0.2	0.1-0.2	0.02-0.1	0.01-0.1	0.1-0.2
Date Sampled		23/01/2017	23/01/2017	23/01/2017	23/01/2017	23/01/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	30/01/2017	30/01/2017	30/01/2017	30/01/2017	30/01/2017
Date analysed	-	31/01/2017	31/01/2017	31/01/2017	31/01/2017	31/01/2017
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.2	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	0.2	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	0.07	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Total +ve PAH's	mg/kg	0.61	<0.05	<0.05	<0.05	<0.05
Surrogate p-Terphenyl-d14	%	113	115	95	95	105

PAHs in Soil						
Our Reference:	UNITS	160839-21	160839-22	160839-23	160839-24	160839-25
Your Reference		BH17	BH17	BH18	BH18	BH19
Depth	-	0.4-0.5	0.9-1.0	0.02-0.1	0.9-1.0	0.5
Date Sampled		23/01/2017	23/01/2017	23/01/2017	23/01/2017	24/01/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	30/01/2017	30/01/2017	30/01/2017	30/01/2017	30/01/2017
Date analysed	-	31/01/2017	31/01/2017	31/01/2017	31/01/2017	31/01/2017
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Total +ve PAH's	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Surrogate p-Terphenyl-d14	%	96	103	99	98	94

DALLS in Onit				
PAHs in Soil Our Reference:	UNITS	160839-26	160839-27	160839-28
Your Reference		BD2/230117	BD4/230117	BD5/230117
	-	000,200111	BB #200111	220,200111
Depth		-	-	-
Date Sampled		23/01/2017	23/01/2017	23/01/2017
Type of sample		Soil	Soil	Soil
Date extracted	-	30/01/2017	30/01/2017	30/01/2017
Date analysed	-	31/01/2017	31/01/2017	31/01/2017
Naphthalene	mg/kg	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5
Total +ve PAH's	mg/kg	<0.05	<0.05	<0.05
Surrogate p-Terphenyl-d14	%	108	102	95

Organochlorine Pesticides in soil						
Our Reference:	UNITS	160839-1	160839-3	160839-4	160839-8	160839-11
Your Reference		BH1	BH2	BH3	BH6A	BH8
Depth		0.1	0.5	0.1	0.5	0.5
Date Sampled		24/01/2017	24/01/2017	24/01/2017	23/01/2017	23/01/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	30/01/2017	30/01/2017	30/01/2017	30/01/2017	30/01/2017
Date analysed	-	31/01/2017	31/01/2017	31/01/2017	31/01/2017	31/01/2017
HCB	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total+veDDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	107	104	100	105	108

Organochlorine Pesticides in soil						
Our Reference:	UNITS	160839-13	160839-14	160839-15	160839-17	160839-18
Your Reference		BH9	BH10	BH11	BH13	BH14
	-					
Depth Date Sampled		0.02-0.1 23/01/2017	0.02-0.1 23/01/2017	0.02-0.1 23/01/2017	0.1-0.2 23/01/2017	0.02-0.1 23/01/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted		30/01/2017	30/01/2017	30/01/2017	30/01/2017	30/01/2017
Date analysed	-	31/01/2017	31/01/2017	31/01/2017	31/01/2017	31/01/2017
-	-					
HCB	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total+veDDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	108	110	107	124	107

Organophosphorus Pesticides						
Organophosphorus Pesiicides Our Reference:	UNITS	160839-1	160839-3	160839-4	160839-8	160839-11
Your Reference		BH1	BH2	BH3	BH6A	BH8
	-	Diff		Brio	Diriort	Dirio
Depth		0.1	0.5	0.1	0.5	0.5
Date Sampled		24/01/2017	24/01/2017	24/01/2017	23/01/2017	23/01/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	30/01/2017	30/01/2017	30/01/2017	30/01/2017	30/01/2017
Date analysed	-	31/01/2017	31/01/2017	31/01/2017	31/01/2017	31/01/2017
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	107	104	100	105	108
Organophosphorus Pesticides						
Our Reference:	UNITS	160839-13	160839-14	160839-15	160839-17	160839-18
Your Reference	 -	BH9	BH10	BH11	BH13	BH14
Depth		0.02-0.1	0.02-0.1	0.02-0.1	0.1-0.2	0.02-0.1
Date Sampled		23/01/2017	23/01/2017	23/01/2017	23/01/2017	23/01/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	30/01/2017	30/01/2017	30/01/2017	30/01/2017	30/01/2017
Date analysed	-	31/01/2017	31/01/2017	31/01/2017	31/01/2017	31/01/2017
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	108	110	107	124	107
Fenitrothion Malathion Parathion Ronnel	mg/kg mg/kg mg/kg mg/kg	<0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1

PCBs in Soil						
Our Reference:	UNITS	160839-1	160839-3	160839-4	160839-8	160839-11
Your Reference		BH1	BH2	BH3	BH6A	BH8
Death	-	0.1	0.5	0.1	0.5	0.5
Depth Date Sampled		0.1 24/01/2017	0.5 24/01/2017	0.1 24/01/2017	0.5 23/01/2017	0.5 23/01/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	30/01/2017	30/01/2017	30/01/2017	30/01/2017	30/01/2017
Date analysed	-	31/01/2017	31/01/2017	31/01/2017	31/01/2017	31/01/2017
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCLMX	%	107	104	100	105	108
PCBs in Soil						
Our Reference:	UNITS	160839-13	160839-14	160839-15	160839-17	160839-18
Your Reference		BH9	BH10	BH11	BH13	BH14
Depth	-	0.02-0.1	0.02-0.1	0.02-0.1	0.1-0.2	0.02-0.1
Date Sampled		23/01/2017	23/01/2017	23/01/2017	23/01/2017	23/01/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	_	30/01/2017	30/01/2017	30/01/2017	30/01/2017	30/01/2017
Date analysed	_	31/01/2017	31/01/2017	31/01/2017	31/01/2017	31/01/2017
Aroclor 1016	malka	<0.1	<0.1	<0.1	<0.1	<0.1
	mg/kg	-	-	-	-	
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCLMX	%	108	110	107	124	107

Acid Extractable metals in soil						
Our Reference:	UNITS	160839-1	160839-2	160839-3	160839-4	160839-5
Your Reference		BH1	BH1	BH2	BH3	BH4
	-					
Depth		0.1	0.5	0.5	0.1	0.1
Date Sampled		24/01/2017	24/01/2017	24/01/2017	24/01/2017	23/01/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	30/01/2017	30/01/2017	30/01/2017	30/01/2017	30/01/2017
Date analysed	-	31/01/2017	31/01/2017	31/01/2017	31/01/2017	31/01/2017
Arsenic	mg/kg	8	6	9	<4	5
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	20	22	24	9	9
Copper	mg/kg	25	16	21	8	18
Lead	mg/kg	100	22	24	29	130
Mercury	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	8	7	7	3	7
Zinc	mg/kg	96	28	26	28	92

Acid Extractable metals in soil						
Our Reference:	UNITS	160839-6	160839-7	160839-8	160839-9	160839-10
Your Reference		BH4	BH5	BH6A	BH7	BH7
	-					
Depth		1.5	0.1	0.5	0.5	1.5
Date Sampled		23/01/2017	24/01/2017	23/01/2017	23/01/2017	23/01/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	30/01/2017	30/01/2017	30/01/2017	30/01/2017	30/01/2017
Date analysed	-	31/01/2017	31/01/2017	31/01/2017	31/01/2017	31/01/2017
Arsenic	mg/kg	6	17	7	7	9
Cadmium	mg/kg	<0.4	0.7	<0.4	<0.4	<0.4
Chromium	mg/kg	10	17	26	25	6
Copper	mg/kg	22	37	20	16	14
Lead	mg/kg	17	200	24	16	12
Mercury	mg/kg	<0.1	0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	4	10	11	6	2
Zinc	mg/kg	26	290	26	110	13

Acid Extractable metals in soil						
Our Reference:	UNITS	160839-11	160839-12	160839-13	160839-14	160839-15
Your Reference		BH8	BH8	BH9	BH10	BH11
	-					
Depth		0.5	1	0.02-0.1	0.02-0.1	0.02-0.1
Date Sampled		23/01/2017	23/01/2017	23/01/2017	23/01/2017	23/01/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	30/01/2017	30/01/2017	30/01/2017	30/01/2017	30/01/2017
Date analysed	-	31/01/2017	31/01/2017	31/01/2017	31/01/2017	31/01/2017
Arsenic	mg/kg	7	9	9	11	6
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	22	27	20	24	19
Copper	mg/kg	14	13	43	21	14
Lead	mg/kg	23	20	59	180	34
Mercury	mg/kg	<0.1	<0.1	0.2	<0.1	<0.1
Nickel	mg/kg	9	3	7	8	7
Zinc	mg/kg	68	16	98	160	79

Acid Extractable metals in soil						
Our Reference:	UNITS	160839-16	160839-17	160839-18	160839-19	160839-20
Your Reference		BH12	BH13	BH14	BH15	BH16
	-					
Depth		0.1-0.2	0.1-0.2	0.02-0.1	0.01-0.1	0.1-0.2
Date Sampled		23/01/2017	23/01/2017	23/01/2017	23/01/2017	23/01/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	30/01/2017	30/01/2017	30/01/2017	30/01/2017	30/01/2017
Date analysed	-	31/01/2017	31/01/2017	31/01/2017	31/01/2017	31/01/2017
Arsenic	mg/kg	9	20	12	19	11
Cadmium	mg/kg	<0.4	0.6	<0.4	0.6	1
Chromium	mg/kg	24	18	26	20	24
Copper	mg/kg	11	27	65	26	27
Lead	mg/kg	39	77	42	79	87
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	6	7	6	6	8
Zinc	mg/kg	36	160	63	190	110

Acid Extractable metals in soil						
Our Reference:	UNITS	160839-21	160839-22	160839-23	160839-24	160839-25
Your Reference		BH17	BH17	BH18	BH18	BH19
Depth Date Sampled Type of sample		0.4-0.5 23/01/2017 Soil	0.9-1.0 23/01/2017 Soil	0.02-0.1 23/01/2017 Soil	0.9-1.0 23/01/2017 Soil	0.5 24/01/2017 Soil
Date prepared	-	30/01/2017	30/01/2017	30/01/2017	30/01/2017	30/01/2017
Date analysed	-	31/01/2017	31/01/2017	31/01/2017	31/01/2017	31/01/2017
Arsenic	mg/kg	10	14	7	32	7
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	22	16	22	10	36
Copper	mg/kg	16	13	18	19	10
Lead	mg/kg	45	17	52	18	23
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	6	3	7	3	5
Zinc	mg/kg	58	14	110	21	15

Acid Extractable metals in soil				
Our Reference:	UNITS	160839-26	160839-27	160839-28
Your Reference		BD2/230117	BD4/230117	BD5/230117
	-			
Depth		-	-	-
Date Sampled		23/01/2017	23/01/2017	23/01/2017
Type of sample		Soil	Soil	Soil
Date prepared	-	30/01/2017	30/01/2017	30/01/2017
Date analysed	-	31/01/2017	31/01/2017	31/01/2017
Arsenic	mg/kg	9	26	5
Cadmium	mg/kg	<0.4	<0.4	<0.4
Chromium	mg/kg	20	9	9
Copper	mg/kg	16	16	20
Lead	mg/kg	100	17	16
Mercury	mg/kg	<0.1	<0.1	<0.1
Nickel	mg/kg	6	3	4
Zinc	mg/kg	100	19	24

Miss Coll Jacon						
Misc Soil - Inorg Our Reference:	UNITS	160839-1	160839-3	160839-4	160839-8	160839-11
	UNITS					
Your Reference		BH1	BH2	BH3	BH6A	BH8
Depth	-	0.1	0.5	0.1	0.5	0.5
•		24/01/2017	24/01/2017	24/01/2017	23/01/2017	23/01/2017
Date Sampled						
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	30/01/2017	30/01/2017	30/01/2017	30/01/2017	30/01/2017
Date analysed	-	30/01/2017	30/01/2017	30/01/2017	30/01/2017	30/01/2017
Total Phenolics (as Phenol)	mg/kg	<5	<5	<5	<5	<5
Misc Soil - Inorg						
Our Reference:	UNITS	160839-13	160839-14	160839-15	160839-17	160839-18
Your Reference		BH9	BH10	BH11	BH13	BH14
	-					
Depth		0.02-0.1	0.02-0.1	0.02-0.1	0.1-0.2	0.02-0.1
Date Sampled		23/01/2017	23/01/2017	23/01/2017	23/01/2017	23/01/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	30/01/2017	30/01/2017	30/01/2017	30/01/2017	30/01/2017
Date analysed	-	30/01/2017	30/01/2017	30/01/2017	30/01/2017	30/01/2017
Total Phenolics (as Phenol)	mg/kg	<5	<5	<5	<5	<5

Moisture						
Our Reference:	UNITS	160839-1	160839-2	160839-3	160839-4	160839-5
Your Reference		BH1	BH1	BH2	BH3	BH4
Depth Date Sampled Type of sample		0.1 24/01/2017 Soil	0.5 24/01/2017 Soil	0.5 24/01/2017 Soil	0.1 24/01/2017 Soil	0.1 23/01/2017 Soil
Date prepared	-	30/01/2017	30/01/2017	30/01/2017	30/01/2017	30/01/2017
Date analysed	-	31/01/2017	31/01/2017	31/01/2017	31/01/2017	31/01/2017
Moisture	%	5.9	13	8.2	5.4	6.0
Moisture						
Our Reference:	UNITS	160839-6	160839-7	160839-8	160839-9	160839-10
Your Reference		BH4	BH5	BH6A	BH7	BH7

	-		2.10	2110/1	2	2	
Depth		1.5	0.1	0.5	0.5	1.5	
Date Sampled Type of sample		23/01/2017 Soil	24/01/2017 Soil	23/01/2017 Soil	23/01/2017 Soil	23/01/2017 Soil	
 Date prepared	-	30/01/2017	30/01/2017	30/01/2017	30/01/2017	30/01/2017	
Date analysed	-	31/01/2017	31/01/2017	31/01/2017	31/01/2017	31/01/2017	
Moisture	%	11	9.3	14	17	15	

Moisture Our Reference: Your Reference	UNITS	160839-11 BH8	160839-12 BH8	160839-13 BH9	160839-14 BH10	160839-15 BH11
Depth Date Sampled Type of sample		0.5 23/01/2017 Soil	1 23/01/2017 Soil	0.02-0.1 23/01/2017 Soil	0.02-0.1 23/01/2017 Soil	0.02-0.1 23/01/2017 Soil
Date prepared	-	30/01/2017	30/01/2017	30/01/2017	30/01/2017	30/01/2017
Date analysed	-	31/01/2017	31/01/2017	31/01/2017	31/01/2017	31/01/2017
Moisture	%	9.5	18	11	8.3	9.3

Moisture Our Reference: Your Reference	UNITS 	160839-16 BH12	160839-17 BH13	160839-18 BH14	160839-19 BH15	160839-20 BH16
Depth Date Sampled Type of sample		0.1-0.2 23/01/2017 Soil	0.1-0.2 23/01/2017 Soil	0.02-0.1 23/01/2017 Soil	0.01-0.1 23/01/2017 Soil	0.1-0.2 23/01/2017 Soil
Date prepared Date analysed	-	30/01/2017 31/01/2017	30/01/2017 31/01/2017	30/01/2017 31/01/2017	30/01/2017 31/01/2017	30/01/2017 31/01/2017
Moisture	%	6.6	10	12	18	9.9

0839-21 160839-3 BH17 BH17 0.4-0.5 0.9-1.0 /01/2017 23/01/20 Soil Soil	BH18 0 0.02-0.1	160839-24 BH18 0.9-1.0 23/01/2017 Soil	160839-25 BH19 0.5 24/01/2017 Soil
).4-0.5 0.9-1.0 /01/2017 23/01/20	0 0.02-0.1 017 23/01/2017	0.9-1.0 23/01/2017	0.5 24/01/2017
/01/2017 23/01/20	017 23/01/2017	23/01/2017	24/01/2017
Soil Soil	Soil	Soil	Soil
301 301	501	00	
01/2017 30/01/20	30/01/2017	30/01/2017	30/01/2017
01/2017 31/01/20	31/01/2017	31/01/2017	31/01/2017
9.5 15	12	12	8.9

Moisture				
Our Reference:	UNITS	160839-26	160839-27	160839-28
Your Reference		BD2/230117	BD4/230117	BD5/230117
	-			
Depth		-	-	-
Date Sampled		23/01/2017	23/01/2017	23/01/2017
Type of sample		Soil	Soil	Soil
Date prepared	-	30/01/2017	30/01/2017	30/01/2017
Date analysed	-	31/01/2017	31/01/2017	31/01/2017
Moisture	%	7.4	10	12

Askastas ID, soila						
Asbestos ID - soils Our Reference:	UNITS	160839-1	160839-3	160839-4	160839-5	160839-7
	UNITS					
Your Reference		BH1	BH2	BH3	BH4	BH5
Depth	-	0.1	0.5	0.1	0.1	0.1
Date Sampled		24/01/2017	24/01/2017	24/01/2017	23/01/2017	24/01/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date analysed	-	01/02/2017	01/02/2017	01/02/2017	01/02/2017	01/02/2017
Sample mass tested	g	Approx. 20g	Approx. 25g	Approx. 25g	Approx. 35g	Approx. 25g
Sample Description	-	Brown fine-				
		grained soil &				
		rocks	rocks	rocks	rocks	rocks
Asbestos ID in soil	-	No asbestos				
		detected at				
		reporting limit of				
		0.1g/kg	0.1g/kg	0.1g/kg	0.1g/kg	0.1g/kg
		Organic fibres detected				
Trace Analysis	-	No asbestos				
		detected	detected	detected	detected	detected
Asbestos ID - soils						
Our Reference:	UNITS	160839-8	160839-9	160839-11	160839-13	160839-14
	UNITS					
Your Reference		BH6A	BH7	BH8	BH9	BH10
Depth		0.5	0.5	0.5	0.02-0.1	0.02-0.1
Date Sampled		23/01/2017	23/01/2017	23/01/2017	23/01/2017	23/01/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date analysed	-	01/02/2017	01/02/2017	01/02/2017	01/02/2017	01/02/2017
Sample mass tested	g	Approx. 25g	Approx. 35g	Approx. 30g	Approx. 25g	Approx. 20g
Sample Description	-	Brown fine-				
		grained soil &				
		rocks	rocks	rocks	rocks	rocks
Asbestos ID in soil	-	No asbestos				
		detected at				
		reporting limit of				
		0.1g/kg	0.1g/kg	0.1g/kg	0.1g/kg	0.1g/kg
		Organic fibres				
		detected	detected	detected	detected	detected
Trace Analysis	-	No asbestos				
		detected	detected	detected	detected	detected

Ashastas ID, soile						
Asbestos ID - soils Our Reference:	UNITS	160839-15	160839-16	160839-17	160839-18	160839-19
Your Reference		BH11	BH12	BH13	BH14	BH15
four Reference		БЦП	DUIZ	БПІЗ	DEL14	CING
Depth		0.02-0.1	0.1-0.2	0.1-0.2	0.02-0.1	0.01-0.1
DateSampled		23/01/2017	23/01/2017	23/01/2017	23/01/2017	23/01/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date analysed	-	01/02/2017	01/02/2017	01/02/2017	01/02/2017	01/02/2017
Sample mass tested	g	Approx. 30g	Approx. 20g	Approx. 40g	Approx. 25g	Approx. 25g
Sample Description	-	Brown fine-	Brown fine-	Brown fine-	Brown fine-	Brown fine-
		grained soil &	grained soil &	grained soil &	grained soil &	grained soil &
		rocks	rocks	rocks	rocks	rocks
Asbestos ID in soil	-	No asbestos	No asbestos	No asbestos	No asbestos	No asbestos
		detected at	detected at	detected at	detected at	detected at
		reporting limit of	reporting limit of	reporting limit of	reporting limit of	reporting limit of
		0.1g/kg Organic fibres	0.1g/kg Organic fibres	0.1g/kg Organic fibres	0.1g/kg Organic fibres	0.1g/kg Organic fibres
		detected	detected	detected	detected	detected
Trace Analysis		No asbestos	No asbestos	No asbestos	No asbestos	No asbestos
Trace Analysis		detected	detected	detected	detected	detected
Asbestos ID - soils						7
Our Reference:	UNITS	160839-20	160839-21	160839-23	160839-25	
Your Reference		BH16	BH17	BH18	BH19	
	-					
Depth		0.1-0.2	0.4-0.5	0.02-0.1	0.5	
Date Sampled		23/01/2017	23/01/2017	23/01/2017	24/01/2017	
Type of sample		Soil	Soil	Soil	Soil	
Date analysed	-	01/02/2017	01/02/2017	01/02/2017	01/02/2017	
Sample mass tested	g	Approx. 20g	Approx. 55g	Approx 25g	Approx. 20g	
		Approx. 20g	Applox. 559	Approx. 25g	Applox. 20g	
Sample Description	-	Brown fine-	Brown fine-	Brown fine-	Brown fine-	
Sample Description	-					
Sample Description	-	Brown fine-	Brown fine-	Brown fine-	Brown fine-	
Sample Description Asbestos ID in soil	-	Brown fine- grained soil &				
	-	Brown fine- grained soil & rocks				
	-	Brown fine- grained soil & rocks No asbestos detected at reporting limit of	Brown fine- grained soil & rocks No asbestos detected at reporting limit of	Brown fine- grained soil & rocks No asbestos detected at reporting limit of	Brown fine- grained soil & rocks No asbestos detected at reporting limit of	
	-	Brown fine- grained soil & rocks No asbestos detected at reporting limit of 0.1g/kg	Brown fine- grained soil & rocks No asbestos detected at reporting limit of 0.1g/kg	Brown fine- grained soil & rocks No asbestos detected at reporting limit of 0.1g/kg	Brown fine- grained soil & rocks No asbestos detected at reporting limit of 0.1g/kg	
	-	Brown fine- grained soil & rocks No asbestos detected at reporting limit of 0.1g/kg Organic fibres	Brown fine- grained soil & rocks No asbestos detected at reporting limit of 0.1g/kg Organic fibres	Brown fine- grained soil & rocks No asbestos detected at reporting limit of 0.1g/kg Organic fibres	Brown fine- grained soil & rocks No asbestos detected at reporting limit of 0.1g/kg Organic fibres	
Asbestos ID in soil	-	Brown fine- grained soil & rocks No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected	Brown fine- grained soil & rocks No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected	Brown fine- grained soil & rocks No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected	Brown fine- grained soil & rocks No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected	
	-	Brown fine- grained soil & rocks No asbestos detected at reporting limit of 0.1g/kg Organic fibres	Brown fine- grained soil & rocks No asbestos detected at reporting limit of 0.1g/kg Organic fibres	Brown fine- grained soil & rocks No asbestos detected at reporting limit of 0.1g/kg Organic fibres	Brown fine- grained soil & rocks No asbestos detected at reporting limit of 0.1g/kg Organic fibres	

Client Reference: 85600.

Misc Inorg - Soil					
Our Reference:	UNITS	160839-2	160839-9	160839-15	160839-22
Your Reference		BH1	BH7	BH11	BH17
Depth Date Sampled Type of sample		0.5 24/01/2017 Soil	0.5 23/01/2017 Soil	0.02-0.1 23/01/2017 Soil	0.9-1.0 23/01/2017 Soil
Date prepared	-	31/01/2017	31/01/2017	31/01/2017	31/01/2017
Date analysed	-	31/01/2017	31/01/2017	31/01/2017	31/01/2017
pH 1:5 soil:water	pH Units	5.3	5.5	6.5	5.5

Client Reference: 85600.

CEC					
Our Reference:	UNITS	160839-2	160839-9	160839-15	160839-22
Your Reference		BH1	BH7	BH11	BH17
Depth Date Sampled Type of sample		0.5 24/01/2017 Soil	0.5 23/01/2017 Soil	0.02-0.1 23/01/2017 Soil	0.9-1.0 23/01/2017 Soil
Date prepared	-	31/01/2017	31/01/2017	31/01/2017	31/01/2017
Date analysed	-	01/02/2017	01/02/2017	01/02/2017	01/02/2017
Exchangeable Ca	meq/100g	2.7	4.1	8.0	5.3
ExchangeableK	meq/100g	0.2	0.1	0.3	0.2
Exchangeable Mg	meq/100g	9.0	6.5	3.6	7.4
ExchangeableNa	meq/100g	0.79	0.55	0.19	0.92
Cation Exchange Capacity	meq/100g	13	11	12	14
Client Reference:

85600.00, Casula

Asbestos ID - materials		
Our Reference:	UNITS	160839-29
Your Reference		BH9/A1
	-	
Depth		0.01-0.02
Date Sampled		23/01/2017
Type of sample		material
Date analysed	-	31/01/2017
Mass / Dimension of Sample	-	37x21x5mm
Sample Description	-	Grey
		compressed
		fibre cement
		material
Asbestos ID in materials	-	Chrysotile
		asbestos
		detected
		Amosite
		asbestos
		detected

MethodID	Methodology Summary
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
	Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.
Org-014	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
Org-012	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.
	For soil results:- 1. 'TEQ PQL' values are assuming all contributing PAHs reported as <pql actually="" are="" at="" is="" pql.="" the="" the<br="" this="">most conservative approach and can give false positive TEQs given that PAHs that contribute to the TEQ calculation may not be present.</pql>
	2. 'TEQ zero' values are assuming all contributing PAHs reported as <pql and="" approach="" are="" below="" but="" calculation="" conservative="" contribute="" false="" is="" least="" more="" negative="" pahs="" pql.<="" present="" susceptible="" td="" teq="" teqs="" that="" the="" this="" to="" when="" zero.=""></pql>
	 3. 'TEQ half PQL' values are assuming all contributing PAHs reported as <pql are="" half="" li="" pql.<="" stipulated="" the=""> Hence a mid-point between the most and least conservative approaches above. </pql>
	Note, the Total +ve PAHs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PAHs" is simply a sum of the positive individual PAHs.
Org-005	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
Org-005	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
	Note, the Total +ve reported DDD+DDE+DDT PQL is reflective of the lowest individual PQL and is therefore simply a sum of the positive individually report DDD+DDE+DDT.
Org-008	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
Org-006	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.
Org-006	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.
	Note, the Total +ve PCBs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PCBs" is simply a sum of the positive individual PCBs.

MethodID	Methodology Summary
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Inorg-031	Total Phenolics by segmented flow analyser (in line distillation with colourimetric finish). Solids are extracted in a caustic media prior to analysis.
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
ASB-001	Asbestos ID - Qualitative identification of asbestos in bulk samples using Polarised Light Microscopy and Dispersion Staining Techniques including Synthetic Mineral Fibre and Organic Fibre as per Australian Standard 4964-2004.
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Metals-009	Determination of exchangeable cations and cation exchange capacity in soils using 1M Ammonium Chloride exchange and ICP-AES analytical finish.

		Clie	ent Reference	e: 85	600.00, Cas	ula		.
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
vTRH(C6-C10)/BTEXN in Soil						Base II Duplicate II % RPD		Receivery
Date extracted	-			30/01/2 017	160839-1	30/01/2017 30/01/2017	LCS-3	30/01/2017
Date analysed	-			01/02/2 017	160839-1	01/02/2017 01/02/2017	LCS-3	01/02/2017
TRHC6 - C9	mg/kg	25	Org-016	<25	160839-1	<25 <25	LCS-3	109%
TRHC6 - C10	mg/kg	25	Org-016	<25	160839-1	<25 <25	LCS-3	109%
Benzene	mg/kg	0.2	Org-016	<0.2	160839-1	<0.2 <0.2	LCS-3	122%
Toluene	mg/kg	0.5	Org-016	<0.5	160839-1	<0.5 <0.5	LCS-3	122%
Ethylbenzene	mg/kg	1	Org-016	<1	160839-1	<1 <1	LCS-3	102%
m+p-xylene	mg/kg	2	Org-016	~2	160839-1	<2 <2	LCS-3	100%
o-Xylene	mg/kg	1	Org-016	<1	160839-1	<1 <1	LCS-3	100%
naphthalene	mg/kg	1	Org-014	<1	160839-1	<1 <1	[NR]	[NR]
Surrogate aaa- Trifluorotoluene	%		Org-016	119	160839-1	115 123 RPD:7	LCS-3	120%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
svTRH (C10-C40) in Soil						Base II Duplicate II % RPD		
Date extracted	-			30/01/2 017	160839-1	30/01/2017 30/01/2017	LCS-3	30/01/2017
Date analysed	-			31/01/2 017	160839-1	30/01/2017 31/01/2017	LCS-3	30/01/2017
TRHC 10 - C 14	mg/kg	50	Org-003	<50	160839-1	<50 <50	LCS-3	108%
TRHC 15 - C28	mg/kg	100	Org-003	<100	160839-1	<100 <100	LCS-3	103%
TRHC29 - C36	mg/kg	100	Org-003	<100	160839-1	<100 <100	LCS-3	107%
TRH>C10-C16	mg/kg	50	Org-003	<50	160839-1	<50 <50	LCS-3	108%
TRH>C16-C34	mg/kg	100	Org-003	<100	160839-1	<100 <100	LCS-3	103%
TRH>C34-C40	mg/kg	100	Org-003	<100	160839-1	<100 <100	LCS-3	107%
Surrogate o-Terphenyl	%		Org-003	109	160839-1	101 104 RPD:3	LCS-3	109%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
PAHs in Soil						Base II Duplicate II % RPD		
Date extracted	-			30/01/2 017	160839-1	30/01/2017 30/01/2017	LCS-3	30/01/2017
Date analysed	-			31/01/2 017	160839-1	31/01/2017 31/01/2017	LCS-3	31/01/2017
Naphthalene	mg/kg	0.1	Org-012	<0.1	160839-1	<0.1 <0.1	LCS-3	88%
Acenaphthylene	mg/kg	0.1	Org-012	<0.1	160839-1	<0.1 <0.1	[NR]	[NR]
Acenaphthene	mg/kg	0.1	Org-012	<0.1	160839-1	<0.1 <0.1	[NR]	[NR]
Fluorene	mg/kg	0.1	Org-012	<0.1	160839-1	<0.1 <0.1	LCS-3	102%
Phenanthrene	mg/kg	0.1	Org-012	<0.1	160839-1	0.1 <0.1	LCS-3	99%
Anthracene	mg/kg	0.1	Org-012	<0.1	160839-1	<0.1 <0.1	[NR]	[NR]
Fluoranthene	mg/kg	0.1	Org-012	<0.1	160839-1	0.2 <0.1	LCS-3	107%
Pyrene	mg/kg	0.1	Org-012	<0.1	160839-1	0.1 <0.1	LCS-3	112%
Benzo(a)anthracene	mg/kg	0.1	Org-012 Org-012	<0.1	160839-1	<0.1 <0.1	[NR]	[NR]
Chrysene	mg/kg	0.1	Org-012 Org-012	<0.1	160839-1	<0.1 <0.1	LCS-3	95%
Benzo(b,j+k)	mg/kg	0.1	Org-012 Org-012	<0.2	160839-1	<0.2 <0.2	[NR]	[NR]
fluoranthene	iiig/kg	0.2	019-012	~ 0.2	100003-1	-V.2 -V.2	[1117]	նուվ

		Clie	ent Referenc	e: 85	5600.00, Cas	ula		
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
PAHs in Soil						Base II Duplicate II % RPD		
Benzo(a)pyrene	mg/kg	0.05	Org-012	<0.05	160839-1	0.06 <0.05	LCS-3	88%
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-012	<0.1	160839-1	<0.1 <0.1	[NR]	[NR]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-012	<0.1	160839-1	<0.1 <0.1	[NR]	[NR]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-012	<0.1	160839-1	<0.1 <0.1	[NR]	[NR]
Surrogate p-Terphenyl- d14	%		Org-012	104	160839-1	98 96 RPD:2	LCS-3	136%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Organochlorine Pesticides in soil						Base II Duplicate II % RPD		
Date extracted	-			30/01/2 017	160839-1	30/01/2017 30/01/2017	LCS-3	30/01/2017
Date analysed	-			31/01/2 017	160839-1	31/01/2017 31/01/2017	LCS-3	31/01/2017
HCB	mg/kg	0.1	Org-005	<0.1	160839-1	<0.1 <0.1	[NR]	[NR]
alpha-BHC	mg/kg	0.1	Org-005	<0.1	160839-1	<0.1 <0.1	LCS-3	84%
gamma-BHC	mg/kg	0.1	Org-005	<0.1	160839-1	<0.1 <0.1	[NR]	[NR]
beta-BHC	mg/kg	0.1	Org-005	<0.1	160839-1	<0.1 <0.1	LCS-3	90%
Heptachlor	mg/kg	0.1	Org-005	<0.1	160839-1	<0.1 <0.1	LCS-3	88%
delta-BHC	mg/kg	0.1	Org-005	<0.1	160839-1	<0.1 <0.1	[NR]	[NR]
Aldrin	mg/kg	0.1	Org-005	<0.1	160839-1	<0.1 <0.1	LCS-3	83%
Heptachlor Epoxide	mg/kg	0.1	Org-005	<0.1	160839-1	<0.1 <0.1	LCS-3	87%
gamma-Chlordane	mg/kg	0.1	Org-005	<0.1	160839-1	<0.1 <0.1	[NR]	[NR]
alpha-chlordane	mg/kg	0.1	Org-005	<0.1	160839-1	<0.1 <0.1	[NR]	[NR]
Endosulfan I	mg/kg	0.1	Org-005	<0.1	160839-1	<0.1 <0.1	[NR]	[NR]
pp-DDE	mg/kg	0.1	Org-005	<0.1	160839-1	<0.1 <0.1	LCS-3	88%
Dieldrin	mg/kg	0.1	Org-005	<0.1	160839-1	<0.1 <0.1	LCS-3	93%
Endrin	mg/kg	0.1	Org-005	<0.1	160839-1	<0.1 <0.1	LCS-3	111%
pp-DDD	mg/kg	0.1	Org-005	<0.1	160839-1	<0.1 <0.1	LCS-3	81%
EndosulfanII	mg/kg	0.1	Org-005	<0.1	160839-1	<0.1 <0.1	[NR]	[NR]
pp-DDT	mg/kg	0.1	Org-005	<0.1	160839-1	<0.1 <0.1	[NR]	[NR]
Endrin Aldehyde	mg/kg	0.1	Org-005	<0.1	160839-1	<0.1 <0.1	[NR]	[NR]
Endosulfan Sulphate	mg/kg	0.1	Org-005	<0.1	160839-1	<0.1 <0.1	LCS-3	87%
Methoxychlor	mg/kg	0.1	Org-005	<0.1	160839-1	<0.1 <0.1	[NR]	[NR]
Surrogate TCMX	%		Org-005	107	160839-1	107 108 RPD:1	LCS-3	118%

85600.00, Casula

Client Reference: 85600.00, Casula								
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Organophosphorus Pesticides						Base II Duplicate II % RPD		
Date extracted	-			30/01/2 017	160839-1	30/01/2017 30/01/2017	LCS-3	30/01/2017
Date analysed	-			31/01/2 017	160839-1	31/01/2017 31/01/2017	LCS-3	31/01/2017
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-008	<0.1	160839-1	<0.1 <0.1	[NR]	[NR]
Bromophos-ethyl	mg/kg	0.1	Org-008	<0.1	160839-1	<0.1 <0.1	[NR]	[NR]
Chlorpyriphos	mg/kg	0.1	Org-008	<0.1	160839-1	<0.1 <0.1	LCS-3	93%
Chlorpyriphos-methyl	mg/kg	0.1	Org-008	<0.1	160839-1	<0.1 <0.1	[NR]	[NR]
Diazinon	mg/kg	0.1	Org-008	<0.1	160839-1	<0.1 <0.1	[NR]	[NR]
Dichlorvos	mg/kg	0.1	Org-008	<0.1	160839-1	<0.1 <0.1	LCS-3	88%
Dimethoate	mg/kg	0.1	Org-008	<0.1	160839-1	<0.1 <0.1	[NR]	[NR]
Ethion	mg/kg	0.1	Org-008	<0.1	160839-1	<0.1 <0.1	LCS-3	78%
Fenitrothion	mg/kg	0.1	Org-008	<0.1	160839-1	<0.1 <0.1	LCS-3	98%
Malathion	mg/kg	0.1	Org-008	<0.1	160839-1	<0.1 <0.1	LCS-3	102%
Parathion	mg/kg	0.1	Org-008	<0.1	160839-1	<0.1 <0.1	LCS-3	103%
Ronnel	mg/kg	0.1	Org-008	<0.1	160839-1	<0.1 <0.1	LCS-3	110%
Surrogate TCMX	%		Org-008	107	160839-1	107 108 RPD:1	LCS-3	102%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
PCBs in Soil						Base II Duplicate II % RPD		
Date extracted	-			30/01/2 017	160839-1	30/01/2017 30/01/2017	LCS-3	30/01/2017
Date analysed	-			31/01/2 017	160839-1	31/01/2017 31/01/2017	LCS-3	31/01/2017
Aroclor 1016	mg/kg	0.1	Org-006	<0.1	160839-1	<0.1 <0.1	[NR]	[NR]
Aroclor 1221	mg/kg	0.1	Org-006	<0.1	160839-1	<0.1 <0.1	[NR]	[NR]
Aroclor 1232	mg/kg	0.1	Org-006	<0.1	160839-1	<0.1 <0.1	[NR]	[NR]
Aroclor 1242	mg/kg	0.1	Org-006	<0.1	160839-1	<0.1 <0.1	[NR]	[NR]
Aroclor 1248	mg/kg	0.1	Org-006	<0.1	160839-1	<0.1 <0.1	[NR]	[NR]
Aroclor 1254	mg/kg	0.1	Org-006	<0.1	160839-1	<0.1 <0.1	LCS-3	96%
Aroclor 1260	mg/kg	0.1	Org-006	<0.1	160839-1	<0.1 <0.1	[NR]	[NR]
Surrogate TCLMX	%		Org-006	107	160839-1	107 108 RPD:1	LCS-3	102%

Client Reference: 85600.00, Casula								
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Acid Extractable metals in soil						Base II Duplicate II % RPD		
Date prepared	-			30/01/2 017	160839-1	30/01/2017 30/01/2017	LCS-3	30/01/2017
Date analysed	-			31/01/2 017	160839-1	31/01/2017 31/01/2017	LCS-3	31/01/2017
Arsenic	mg/kg	4	Metals-020	<4	160839-1	8 8 RPD:0	LCS-3	119%
Cadmium	mg/kg	0.4	Metals-020	<0.4	160839-1	<0.4 <0.4	LCS-3	104%
Chromium	mg/kg	1	Metals-020	<1	160839-1	20 21 RPD:5	LCS-3	111%
Copper	mg/kg	1	Metals-020	<1	160839-1	25 22 RPD:13	LCS-3	107%
Lead	mg/kg	1	Metals-020	<1	160839-1	100 95 RPD:5	LCS-3	107%
Mercury	mg/kg	0.1	Metals-021	<0.1	160839-1	0.1 0.1 RPD:0	LCS-3	98%
Nickel	mg/kg	1	Metals-020	<1	160839-1	8 7 RPD:13	LCS-3	102%
Zinc	mg/kg	1	Metals-020	<1	160839-1	96 100 RPD:4	LCS-3	106%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Misc Soil - Inorg						Base II Duplicate II % RPD		
Date prepared	-			30/01/2 017	160839-1	30/01/2017 30/01/2017	LCS-1	30/01/2017
Date analysed	-			30/01/2 017	160839-1	30/01/2017 30/01/2017	LCS-1	30/01/2017
Total Phenolics (as Phenol)	mg/kg	5	Inorg-031	ব্য	160839-1	<5 <5	LCS-1	102%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate	Duplicate results	Spike Sm#	Spike %
Misc Inorg - Soil					Sm#	Base II Duplicate II % RPD		Recovery
Date prepared	-			31/01/2 017	[NT]	[NT]	LCS-3	31/01/2017
Date analysed	-			31/01/2 017	[NT]	[NT]	LCS-3	31/01/2017
pH 1:5 soil:water	pHUnits		Inorg-001	[NT]	[NT]	[NT]	LCS-3	101
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
CEC						Base II Duplicate II % RPD		
Date prepared	-			31/01/2 017	[NT]	[NT]	LCS-1	31/01/2017
Date analysed	-			01/02/2 017	[NT]	[NT]	LCS-1	01/02/2017
ExchangeableCa	meq/100 g	0.1	Metals-009	<0.1	[NT]	[NT]	LCS-1	110%
ExchangeableK	meq/100 g	0.1	Metals-009	<0.1	[NT]	[NT]	LCS-1	115%
ExchangeableMg	meq/100 g	0.1	Metals-009	<0.1	[NT]	[NT]	LCS-1	112%
ExchangeableNa	meq/100 g	0.1	Metals-009	<0.1	[NT]	[NT]	LCS-1	110%

		Client Reference	e: 85600.00, Casula		
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery
vTRH(C6-C10)/BTEXNin Soil			Base + Duplicate + %RPD		
Date extracted	-	160839-11	30/01/2017 30/01/2017	LCS-4	30/01/2017
Date analysed	-	160839-11	01/02/2017 01/02/2017	LCS-4	01/02/2017
TRHC6 - C9	mg/kg	160839-11	<25 <25	LCS-4	104%
TRHC6 - C10	mg/kg	160839-11	<25 <25	LCS-4	104%
Benzene	mg/kg	160839-11	<0.2 <0.2	LCS-4	96%
Toluene	mg/kg	160839-11	<0.5 <0.5	LCS-4	96%
Ethylbenzene	mg/kg	160839-11	<1 <1	LCS-4	107%
m+p-xylene	mg/kg	160839-11	<2 <2	LCS-4	110%
o-Xylene	mg/kg	160839-11	<1 <1	LCS-4	111%
naphthalene	mg/kg	160839-11	<1 <1	[NR]	[NR]
<i>Surrogate</i> aaa- Trifluorotoluene	%	160839-11	117 126 RPD:7	LCS-4	90%
	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery
svTRH (C10-C40) in Soil			Base + Duplicate + %RPD		
Date extracted	-	160839-11	30/01/2017 30/01/2017	LCS-4	30/01/2017
Date analysed	-	160839-11	31/01/2017 31/01/2017	LCS-4	31/01/2017
TRHC 10 - C 14	mg/kg	160839-11	<50 <50	LCS-4	105%
TRHC 15 - C28	mg/kg	160839-11	<100 <100	LCS-4	98%
TRHC29 - C36	mg/kg	160839-11	<100 <100	LCS-4	100%
TRH>C10-C16	mg/kg	160839-11	<50 <50	LCS-4	105%
TRH>C16-C34	mg/kg	160839-11	<100 <100	LCS-4	98%
TRH>C34-C40	mg/kg	160839-11	<100 <100	LCS-4	100%
Surrogate o-Terphenyl	%	160839-11	107 106 RPD:1	LCS-4	111%
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery
PAHs in Soil			Base + Duplicate + %RPD		
Date extracted	-	160839-11	30/01/2017 30/01/2017	LCS-4	30/01/2017
Date analysed	-	160839-11	31/01/2017 31/01/2017	LCS-4	31/01/2017
Naphthalene	mg/kg	160839-11	<0.1 <0.1	LCS-4	92%
Acenaphthylene	mg/kg	160839-11	<0.1 <0.1	[NR]	[NR]
Acenaphthene	mg/kg	160839-11	<0.1 <0.1	[NR]	[NR]
Fluorene	mg/kg	160839-11	<0.1 <0.1	LCS-4	101%
Phenanthrene	mg/kg	160839-11	<0.1 <0.1	LCS-4	100%
Anthracene	mg/kg	160839-11	<0.1 <0.1	[NR]	[NR]
Fluoranthene	mg/kg	160839-11	<0.1 <0.1	LCS-4	104%
Pyrene	mg/kg	160839-11	<0.1 <0.1	LCS-4	107%
Benzo(a)anthracene	mg/kg	160839-11	<0.1 <0.1	[NR]	[NR]
Chrysene	mg/kg	160839-11	<0.1 <0.1	LCS-4	99%
Benzo(b,j+k)fluoranthene	mg/kg	160839-11	<0.2 <0.2	[NR]	[NR]
Benzo(a)pyrene	mg/kg	160839-11	<0.05 <0.05	LCS-4	90%
Indeno(1,2,3-c,d)pyrene	mg/kg	160839-11	<0.1 <0.1	[NR]	[NR]
Dibenzo(a,h)anthracene	mg/kg	160839-11	<0.1 <0.1	[NR]	[NR]

		Client Referenc	e: 85600.00, Casula		
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery
PAHs in Soil			Base + Duplicate + % RPD		
Benzo(g,h,i)perylene	mg/kg	160839-11	<0.1 <0.1	[NR]	[NR]
Surrogate p-Terphenyl-d14	%	160839-11	119 105 RPD:12	LCS-4	127%
QUALITY CONTROL	UNITS	Dup.Sm#	Duplicate		
Organochlorine Pesticides in soil			Base + Duplicate + %RPD		
Date extracted	-	160839-11	30/01/2017 30/01/2017		
Date analysed	-	160839-11	31/01/2017 31/01/2017		
HCB	mg/kg	160839-11	<0.1 <0.1		
alpha-BHC	mg/kg	160839-11	<0.1 <0.1		
gamma-BHC	mg/kg	160839-11	<0.1 <0.1		
beta-BHC	mg/kg	160839-11	<0.1 <0.1		
Heptachlor	mg/kg	160839-11	<0.1 <0.1		
delta-BHC	mg/kg	160839-11	<0.1 <0.1		
Aldrin	mg/kg	160839-11	<0.1 <0.1		
Heptachlor Epoxide	mg/kg	160839-11	<0.1 <0.1		
gamma-Chlordane	mg/kg	160839-11	<0.1 <0.1		
alpha-chlordane	mg/kg	160839-11	<0.1 <0.1		
Endosulfan I	mg/kg	160839-11	<0.1 <0.1		
pp-DDE	mg/kg	160839-11	<0.1 <0.1		
Dieldrin	mg/kg	160839-11	<0.1 <0.1		
Endrin	mg/kg	160839-11	<0.1 <0.1		
pp-DDD	mg/kg	160839-11	<0.1 <0.1		
Endosulfan II	mg/kg	160839-11	<0.1 <0.1		
pp-DDT	mg/kg	160839-11	<0.1 <0.1		
Endrin Aldehyde	mg/kg	160839-11	<0.1 <0.1		
Endosulfan Sulphate	mg/kg	160839-11	<0.1 <0.1		
Methoxychlor	mg/kg	160839-11	<0.1 <0.1		
Surrogate TCMX	%	160839-11	108 110 RPD:2		

		Client Reference	,	1	
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate		
Organophosphorus Pesticides			Base + Duplicate + %RPD		
Date extracted	-	160839-11	30/01/2017 30/01/2017		
Date analysed	-	160839-11	31/01/2017 31/01/2017		
Azinphos-methyl (Guthion)	mg/kg	160839-11	<0.1 <0.1		
Bromophos-ethyl	mg/kg	160839-11	<0.1 <0.1		
Chlorpyriphos	mg/kg	160839-11	<0.1 <0.1		
Chlorpyriphos-methyl	mg/kg	160839-11	<0.1 <0.1		
Diazinon	mg/kg	160839-11	<0.1 <0.1		
Dichlorvos	mg/kg	160839-11	<0.1 <0.1		
Dimethoate	mg/kg	160839-11	<0.1 <0.1		
Ethion	mg/kg	160839-11	<0.1 <0.1		
Fenitrothion	mg/kg	160839-11	<0.1 <0.1		
Malathion	mg/kg	160839-11	<0.1 <0.1		
Parathion	mg/kg	160839-11	<0.1 <0.1		
Ronnel	mg/kg	160839-11	<0.1 <0.1		
Surrogate TCMX	%	160839-11	108 110 RPD:2		
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	•	
PCBs in Soil			Base + Duplicate + %RPD		
Date extracted	-	160839-11	30/01/2017 30/01/2017	•	
Date analysed	-	160839-11	31/01/2017 31/01/2017		
Aroclor 1016	mg/kg	160839-11	<0.1 <0.1		
Aroclor 1221	mg/kg	160839-11	<0.1 <0.1		
Aroclor 1232	mg/kg	160839-11	<0.1 <0.1		
Aroclor 1242	mg/kg	160839-11	<0.1 <0.1		
Aroclor 1248	mg/kg	160839-11	<0.1 <0.1		
Aroclor 1254	mg/kg	160839-11	<0.1 <0.1		
Aroclor 1260	mg/kg	160839-11	<0.1 <0.1		
Surrogate TCLMX	%	160839-11	108 110 RPD:2		
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recove
Acid Extractable metals in soil			Base + Duplicate + %RPD		
Date prepared	-	160839-11	30/01/2017 30/01/2017	LCS-4	30/01/2017
Date analysed	-	160839-11	31/01/2017 31/01/2017	LCS-4	31/01/2017
Arsenic	mg/kg	160839-11	7 7 RPD:0	LCS-4	115%
Cadmium	mg/kg	160839-11	<0.4 <0.4	LCS-4	103%
Chromium	mg/kg	160839-11	22 21 RPD:5	LCS-4	108%
Copper	mg/kg	160839-11	14 14 RPD:0	LCS-4	103%
Lead	mg/kg	160839-11	23 24 RPD:4	LCS-4	102%
Mercury	mg/kg	160839-11	<0.1 <0.1	LCS-4	80%
Nickel	mg/kg	160839-11	9 7 RPD:25	LCS-4	101%
Zinc	mg/kg	160839-11	68 77 RPD:12	LCS-4	103%

		Client Reference	e: 85600.00, Casula		
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery
vTRH(C6-C10)/BTEXNin Soil			Base + Duplicate + %RPD		
Date extracted	-	160839-21	30/01/2017 30/01/2017	160839-3	30/01/2017
Date analysed	-	160839-21	01/02/2017 01/02/2017	160839-3	01/02/2017
TRHC6 - C9	mg/kg	160839-21	<25 <25	160839-3	109%
TRHC6 - C10	mg/kg	160839-21	<25 <25	160839-3	109%
Benzene	mg/kg	160839-21	<0.2 <0.2	160839-3	122%
Toluene	mg/kg	160839-21	<0.5 <0.5	160839-3	122%
Ethylbenzene	mg/kg	160839-21	<1 <1	160839-3	101%
m+p-xylene	mg/kg	160839-21	<2 <2	160839-3	100%
o-Xylene	mg/kg	160839-21	<1 <1	160839-3	99%
naphthalene	mg/kg	160839-21	<1 <1	[NR]	[NR]
<i>Surrogate</i> aaa- Trifluorotoluene	%	160839-21	87 84 RPD: 4	160839-3	116%
QUALITY CONTROL svTRH (C10-C40) in Soil	UNITS	Dup.Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Date extracted	-	160839-21	30/01/2017 30/01/2017	160839-3	30/01/2017
Date analysed	-	160839-21	31/01/2017 31/01/2017	160839-3	31/01/2017
TRHC 10 - C14	mg/kg	160839-21	<50 <50	160839-3	99%
TRHC 15 - C28	mg/kg	160839-21	<100 <100	160839-3	95%
TRHC29 - C36	mg/kg	160839-21	<100 <100	160839-3	102%
TRH>C10-C16	mg/kg	160839-21	<50 <50	160839-3	99%
TRH>C16-C34	mg/kg	160839-21	<100 <100	160839-3	95%
TRH>C34-C40	mg/kg	160839-21	<100 <100	160839-3	102%
Surrogate o-Terphenyl	%	160839-21	109 109 RPD:0	160839-3	105%
QUALITY CONTROL PAHs in Soil	UNITS	Dup.Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Date extracted	-	160839-21	30/01/2017 30/01/2017	160839-3	30/01/2017
Date analysed	-	160839-21	31/01/2017 31/01/2017	160839-3	31/01/2017
Naphthalene	mg/kg	160839-21	<0.1 <0.1	160839-3	86%
Acenaphthylene	mg/kg	160839-21	<0.1 <0.1	[NR]	[NR]
Acenaphthene	mg/kg	160839-21	<0.1 <0.1	[NR]	[NR]
Fluorene	mg/kg	160839-21	<0.1 <0.1	160839-3	90%
Phenanthrene	mg/kg	160839-21	<0.1 <0.1	160839-3	86%
Anthracene	mg/kg	160839-21	<0.1 <0.1	[NR]	[NR]
Fluoranthene	mg/kg	160839-21	<0.1 <0.1	160839-3	82%
Pyrene	mg/kg	160839-21	<0.1 <0.1	160839-3	86%
Benzo(a)anthracene	mg/kg	160839-21	<0.1 <0.1	[NR]	[NR]
Chrysene	mg/kg	160839-21	<0.1 <0.1	160839-3	85%
Benzo(b,j+k)fluoranthene	mg/kg	160839-21	<0.2 <0.2	[NR]	[NR]
Benzo(a)pyrene	mg/kg	160839-21	<0.05 <0.05	160839-3	66%
Indeno(1,2,3-c,d)pyrene	mg/kg	160839-21	<0.1 <0.1	[NR]	[NR]
Dibenzo(a,h)anthracene	mg/kg	160839-21	<0.1 <0.1	[NR]	[NR]

		Client Referenc	e: 85600.00, Casula		
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery
PAHs in Soil			Base + Duplicate + %RPD		
Benzo(g,h,i)perylene	mg/kg	160839-21	<0.1 <0.1	[NR]	[NR]
Surrogate p-Terphenyl-d14	%	160839-21	96 97 RPD:1	160839-3	108%
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery
Organochlorine Pesticides in soil			Base + Duplicate + %RPD		
Date extracted	-	[NT]	[NT]	160839-3	30/01/2017
Date analysed	-	[NT]	[NT]	160839-3	31/01/2017
HCB	mg/kg	[NT]	[NT]	[NR]	[NR]
alpha-BHC	mg/kg	[NT]	[NT]	160839-3	79%
gamma-BHC	mg/kg	[NT]	[NT]	[NR]	[NR]
beta-BHC	mg/kg	[NT]	[NT]	160839-3	80%
Heptachlor	mg/kg	[NT]	[NT]	160839-3	82%
delta-BHC	mg/kg	[NT]	[NT]	[NR]	[NR]
Aldrin	mg/kg	[NT]	[NT]	160839-3	79%
Heptachlor Epoxide	mg/kg	[NT]	[NT]	160839-3	81%
gamma-Chlordane	mg/kg	[NT]	[NT]	[NR]	[NR]
alpha-chlordane	mg/kg	[NT]	[NT]	[NR]	[NR]
Endosulfanl	mg/kg	[NT]	[NT]	[NR]	[NR]
pp-DDE	mg/kg	[NT]	[NT]	160839-3	84%
Dieldrin	mg/kg	[NT]	[NT]	160839-3	88%
Endrin	mg/kg	[NT]	[NT]	160839-3	104%
pp-DDD	mg/kg	[NT]	[NT]	160839-3	78%
Endosulfan II	mg/kg	[NT]	[NT]	[NR]	[NR]
pp-DDT	mg/kg	[NT]	[NT]	[NR]	[NR]
Endrin Aldehyde	mg/kg	[NT]	[NT]	[NR]	[NR]
Endosulfan Sulphate	mg/kg	[NT]	[NT]	160839-3	86%
Methoxychlor	mg/kg	[NT]	[NT]	[NR]	[NR]
Surrogate TCMX	%	[NT]	[NT]	160839-3	114%

		Client Reference	e: 85600.00, Casula		
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery
Organophosphorus Pesticides			Base + Duplicate + %RPD		
Date extracted	-	[NT]	[NT]	160839-3	30/01/2017
Date analysed	-	[NT]	[NT]	160839-3	31/01/2017
Azinphos-methyl (Guthion)	mg/kg	[NT]	[NT]	[NR]	[NR]
Bromophos-ethyl	mg/kg	[NT]	[NT]	[NR]	[NR]
Chlorpyriphos	mg/kg	[NT]	[NT]	160839-3	93%
Chlorpyriphos-methyl	mg/kg	[NT]	[NT]	[NR]	[NR]
Diazinon	mg/kg	[NT]	[NT]	[NR]	[NR]
Dichlorvos	mg/kg	[NT]	[NT]	160839-3	106%
Dimethoate	mg/kg	[NT]	[NT]	[NR]	[NR]
Ethion	mg/kg	[NT]	[NT]	160839-3	91%
Fenitrothion	mg/kg	[NT]	[NT]	160839-3	83%
Malathion	mg/kg	[NT]	[NT]	160839-3	68%
Parathion	mg/kg	[NT]	[NT]	160839-3	106%
Ronnel	mg/kg	[NT]	[NT]	160839-3	114%
Surrogate TCMX	%	[NT]	[NT]	160839-3	106%
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery
PCBs in Soil			Base + Duplicate + %RPD		
Date extracted	-	[NT]	[NT]	160839-3	30/01/2017
Date analysed	-	[NT]	[NT]	160839-3	31/01/2017
Aroclor 1016	mg/kg	[NT]	[NT]	[NR]	[NR]
Aroclor 1221	mg/kg	[NT]	[NT]	[NR]	[NR]
Aroclor 1232	mg/kg	[NT]	[NT]	[NR]	[NR]
Aroclor 1242	mg/kg	[NT]	[NT]	[NR]	[NR]
Aroclor 1248	mg/kg	[NT]	[NT]	[NR]	[NR]
Aroclor 1254	mg/kg	[NT]	[NT]	160839-3	102%
Aroclor 1260	mg/kg	[NT]	[NT]	[NR]	[NR]
Surrogate TCLMX	%	[NT]	[NT]	160839-3	106%
QUALITY CONTROL Acid Extractable metals in soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Date prepared	-	160839-21	30/01/2017 30/01/2017	160839-3	30/01/2017
Date analysed	-	160839-21	31/01/2017 31/01/2017	160839-3	31/01/2017
Arsenic	mg/kg	160839-21	10 11 RPD:10	160839-3	82%
Cadmium	mg/kg	160839-21	<0.4 <0.4	160839-3	85%
Chromium	mg/kg	160839-21	22 20 RPD:10	160839-3	85%
Copper	mg/kg	160839-21	16 18 RPD:12	160839-3	98%
Lead	mg/kg	160839-21	45 51 RPD:12	160839-3	71%
Mercury	mg/kg	160839-21	<0.1 <0.1	160839-3	102%
Nickel	mg/kg	160839-21	6 7 RPD:15	160839-3	81%
Zinc	mg/kg	160839-21	58 72 RPD:22	160839-3	73%

		Client Referenc	e: 85600.00, Casula		
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery
Misc Soil - Inorg			Base + Duplicate + %RPD		
Date prepared	-	[NT]	[NT]	160839-3	30/01/2017
Date analysed	-	[NT]	[NT]	160839-3	30/01/2017
Total Phenolics (as Phenol)	mg/kg	[NT]	[NT]	160839-3	98%
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery
vTRH(C6-C10)/BTEXNin Soil			Base + Duplicate + %RPD		
Date extracted	-	[NT]	[NT]	160839-22	30/01/2017
Date analysed	-	[NT]	[NT]	160839-22	01/02/2017
TRHC6 - C9	mg/kg	[NT]	[NT]	160839-22	101%
TRHC6 - C10	mg/kg	[NT]	[NT]	160839-22	101%
Benzene	mg/kg	[NT]	[NT]	160839-22	92%
Toluene	mg/kg	[NT]	[NT]	160839-22	93%
Ethylbenzene	mg/kg	[NT]	[NT]	160839-22	104%
m+p-xylene	mg/kg	[NT]	[NT]	160839-22	107%
o-Xylene	mg/kg	[NT]	[NT]	160839-22	108%
naphthalene	mg/kg	[NT]	[NT]	[NR]	[NR]
<i>Surrogate</i> aaa- Trifluorotoluene	%	[NT]	[NT]	160839-22	84%
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery
svTRH (C10-C40) in Soil			Base + Duplicate + %RPD		
Date extracted	-	[NT]	[NT]	160839-22	30/01/2017
Date analysed	-	[NT]	[NT]	160839-22	31/01/2017
TRHC 10 - C 14	mg/kg	[NT]	[NT]	160839-22	115%
TRHC 15 - C28	mg/kg	[NT]	[NT]	160839-22	107%
TRHC29 - C36	mg/kg	[NT]	[NT]	160839-22	103%
TRH>C10-C16	mg/kg	[NT]	[NT]	160839-22	115%
TRH>C16-C34	mg/kg	[NT]	[NT]	160839-22	107%
TRH>C34-C40	mg/kg	[NT]	[NT]	160839-22	103%
Surrogate o-Terphenyl	%	[NT]	[NT]	160839-22	110%
QUALITY CONTROL PAHs in Soil	UNITS	Dup.Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Date extracted	-	[NT]	[NT]	160839-22	30/01/2017
Date analysed	-	[NT]	[NT]	160839-22	31/01/2017
Naphthalene	mg/kg	[NT]	[NT]	160839-22	88%
Acenaphthylene	mg/kg	[NT]	[NT]	[NR]	[NR]
Acenaphthene	mg/kg	[NT]	[NT]	[NR]	[NR]
Fluorene	mg/kg	[NT]	[NT]	160839-22	98%
Phenanthrene	mg/kg	[NT]	[NT]	160839-22	87%
A sthreese a	mg/kg	[NT]	[NT]	[NR]	[NR]
Anthracene					
Fluoranthene	mg/kg	[NT]	[NT]	160839-22	90%
	mg/kg mg/kg	[NT] [NT]	[NT] [NT]	160839-22 160839-22	90% 96%

		Client Referenc	e: 85600.00, Casula		
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery
PAHs in Soil			Base + Duplicate + % RPD		
Chrysene	mg/kg	[NT]	[NT]	160839-22	87%
Benzo(b,j+k)fluoranthene	mg/kg	[NT]	[NT]	[NR]	[NR]
Benzo(a)pyrene	mg/kg	[NT]	[NT]	160839-22	76%
Indeno(1,2,3-c,d)pyrene	mg/kg	[NT]	[NT]	[NR]	[NR]
Dibenzo(a,h)anthracene	mg/kg	[NT]	[NT]	[NR]	[NR]
Benzo(g,h,i)perylene	mg/kg	[NT]	[NT]	[NR]	[NR]
Surrogate p-Terphenyl-d14	%	[NT]	[NT]	160839-22	121%
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery
Acid Extractable metals in			Base + Duplicate + %RPD		
soil					
Date prepared	-	[NT]	[NT]	160839-22	30/01/2017
Date analysed	-	[NT]	[NT]	160839-22	31/01/2017
Arsenic	mg/kg	[NT]	[NT]	160839-22	91%
Cadmium	mg/kg	[NT]	[NT]	160839-22	94%
Chromium	mg/kg	[NT]	[NT]	160839-22	89%
Copper	mg/kg	[NT]	[NT]	160839-22	105%
Lead	mg/kg	[NT]	[NT]	160839-22	84%
Mercury	mg/kg	[NT]	[NT]	160839-22	96%
Nickel	mg/kg	[NT]	[NT]	160839-22	87%
Zinc	mg/kg	[NT]	[NT]	160839-22	84%

Report Comments:

Asbestos: A portion of the supplied sample was sub-sampled for asbestos analysis according to Envirolab procedures. We cannot guarantee that this sub-sample is indicative of the entire sample. Envirolab recommends supplying 40-50g of sample in its own container.

Note: Samples for asbestos testing were sub-sampled from jars provided by the client.

Asbestos ID was analysed by Approved Identifier: Asbestos ID was authorised by Approved Signatory: Paul Ching, Matt Tang Paul Ching

INS: Insufficient sample for this test NR: Test not required <: Less than PQL: Practical Quantitation Limit RPD: Relative Percent Difference >: Greater than NT: Not tested NA: Test not required LCS: Laboratory Control Sample

Quality Control Definitions

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. **Duplicate**: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike : A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.

LCS (Laboratory Control Sample) : This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable. Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Project No:		85600.00	00.0			Suburb:		Casula			To:	Envi	Envirolab Services	rices	
Project Name:		Casula	la			Order Number	umber								
Project Manager:		David	David Holden			Sampler:	8				Attn:	Ailee	Aileen Hie		
Emails:		david	david.holden@douglaspartners.com.au	uglaspartr	hers.com.au	1	iia@doug	@douglaspartners.com.au	's.com.al	-	Phone:				
Date Required:		Same day	e day	24 hours	48 hours		72 hours		Standard	×	Email:		Ahie@envirolab.com.au	ib.com.au	
Prior Storage:	Esky	X Fridge	Shelve	ed		Do samples		otential'		Yes 🗆		If YES, then	handle, trar	isport and store	(If YES, then handle, transport and store in accordance with FPM HAZID)
			pəlo	Sample Type	Container Type				1	Analytes					
Sample ID	Sample Deb	Lab ID	qme2 əteO	S - soil W - water	ଏ/୨	ടെ odmoጋ	Sc odmoJ	E odmoJ	CEC	Hq	Heavy Metals	НАЧ	ХЭТВ		Notes/preservation
BH1	0.1	1	24/01/17	S	9	×									
BH1	0.5	2	24/01/17	S	U			×	×	×					
BH2	0.5	5	24/01/17	S	U	×									
BH3	0.1	4	24/01/17	S	U	×									
BH4	0.1	S	23/01/17	S	9		×								
BH4	1.5	9	23/01/17	S	9			×		2					Envirolab Services
BH5	0.1	3	24/01/17	S	ŋ		×							Elinkoru	CF
BH6A	0.5	5	23/01/17	S	9	×								Job No:	169,091
BH7	0.5	. 6	23/01/17	S	ŋ		×		×	×				Date Re	Received: 25 J
BH7	1.5	101	23/01/17	S	IJ			×						0	;p
BH8	0.5	11	23/01/17	S	IJ	×								Receive	eived by: HO
BH8	1	2	23/01/17	S	ŋ			×						Coding	ling. toeltepack
BH9	0.02 - 0.1	E	23/01/17	S	IJ	×								Sedurity	Sedurity Intact/Broken/None
BH10	0.02 - 0.1	14	23/01/17	S	ß	×									
BH11	0.02 - 0.1	5	23/01/17	S	ŋ	×			×	×					
PQL (S) mg/kg													ANZEC	C PQLs req	ANZECC PQLs req'd for all water analytes
PQL = practical quantitation limit. If none give	quantitatio	on limit.	If none giver	n, default	If none given, default to Laboratory Method Detection Limit	v Method L	Detection	Limit			Lab Re	port/Ref	Lab Report/Reference No:	ö	
Total number of samples in container:	samples i	n contain	Ter:		Relin	Relinguished by	:/0	F	ransport	Transported to laboratory by:	oratory	bv:			
Send Results to:			Douglas Partners Pty Ltd	iers Pty Lt		ess							Phone:		Fax:
Signed:	6	1	A State of the state of		Docented build	100000	1- 100	2 6 1				T 0 0 10	Time of		17.10

Page 1 of 3

14 00 bZ

0.01-0.02

ETTA BHQ (A1)

FPM - ENVID/Form COC 02

Rev4/October2016

Name: Casula Order Number Order Number Attn:: Warage: Exky Fridge Shunder Phous Phous Quired: Same day 24 hours 38 hours 37 hours Phous Phous Quired: Same day 24 hours 38 hours 38 hours Phous Phous Participe Simple Ontaling Ontaling Ontaling Phous Phous Participe Simple Contain Do sample contain Phous Phous Phous Q 0 0 0 0 0 Phous Phous Phous Q 0 0 0 0 0 Phous Phous Phous Q 0 0 0 0 Phous Phous Phous Phous Q 0 0 0 0 Phous Phous Phous Phous Q 0 0 0 Phous Phous	Project No:		85600.00	0.00			Suburb:	Casula	a		To:	Envi	Envirolab Services	ices	
Manager: David Holden Attr:: Carrier Low of the loge of the log	Project Name:		Casu	a			Order Num								
Addition Calculation Calculation Phone Phone<	Project Manage		David	I Holden			Sampler:				Attn:	Ailee	in Hie		
Guident: Same day 2 dhours 2 dhours 2 dhours Standard Email: Same day 1	Emails:		david	.holden@dd	ouglaspartr	iers.com.au			rtners.com	au	Phone:				
Piete Esty Fridge Shelved Analytes No $Merrials Hample Type Type Container Analytes No Merrials Bample Container Type Container Analytes No Merrials Bample Container No Sample Container Analytes Merrials Bample Container No Sample Container Analytes Merrials Bample Container X X X No No 3001012 No 23001017 S Co No X $	Date Required:		Same	e day	24 hours	48 hc	urs 🛛		Standar	- p	Email:	Ahie	@envirola	b.com.au	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Prior Storage:		-		ved		Do samples c	ontain 'poten'	tial' HBM?	Yes		If YES, then	handle, tran	sport and sto	bre in accordance with FPM HAZID
Ple Lab Value Sample Pla Value Sample Pa Pa A Gample D Value Sample D Combo Gample D Plas Plan A Doz-011 Vb 2301/17 S G X P P P 3 0.1-02 Vb 2301/17 S G X P P P 3 0.1-02 Vb 2301/17 S G X P P P 4 0.02-01 Vb 2301/17 S G X P P P 5 0.01-01 Vb 2301/17 S G X X X X X X 7 2.1 0.4-0.5 Vt 2301/17 S G X X X X X X X X X X X X X X		цţ		1	Sample Type	Container Type				Analytes					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Sample ID	Sample Dep	Lab ID] pnilqms2	S - soil W - water	ଟ/ଇ			CEC	Hq	yvsəH Retals	НАЧ	ХЭТВ]l sotsədzA	Notes/preservation
3 0.1-0.2 \overline{H} 2301/17 S G x	BH12	0.1 - 0.2	16	23/01/17	S	U									
4 $0.02 - 0.1$ θ $2301/17$ S G x	BH13	0.1 - 0.2	E	23/01/17	S	G	×								
5 0.01 - 0.1 \vee{N} 230117 S G x	BH14	0.02 - 0.1	14	23/01/17	S	ß	×								
6 0.1 - 0.2 20 2301/17 S G x	BH15	0.01 - 0.1	19.	23/01/17	S	ß									
7 2.1 0.4-0.5 MC 2301/17 S G x <	BH16	0.1 - 0.2	20	23/01/17	S	ß									
7 $2.2.2$ $0.9 - 1.0$ 1.5 $2.3071/17$ S G x <td< td=""><td>100</td><td>0.4 - 0.5,</td><td>AT A</td><td>23/01/17</td><td>S</td><td>ŋ</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	100	0.4 - 0.5,	AT A	23/01/17	S	ŋ									
8 23 0.02-0.1 ∞ 23/01/17 S G x	120.00		A	23/01/17	S	ŋ		×	×	×					
8 24 0.9-1.0 $t 23/01/17 S G x $			22	23/01/17	S	ß	~								
9 \le 0.5 $\cancel{\cancel{\cancel{\cancel{\cancel{\cancel{\cancel{\cancel{\cancel{\cancel{\cancel{\cancel{\cancel{\cancel{\cancel{\cancel{\cancel{\cancel{$		0.9 - 1.0	S	23/01/17	S	ß		×							
0117 - 26 23/01/17 S G × <t< td=""><td>BH19 25</td><td>0.5</td><td>14</td><td>24/01/17</td><td>S</td><td>ß</td><td>^</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	BH19 25	0.5	14	24/01/17	S	ß	^								
0117 - 21 28 23/01/17 S G N X	BD2/230117		20	23/01/17	S	ს					×	×		1	
0117 - 28, 24,01/17 S G N X X X X X Interview - - - - - X	BD4/230117		R	23/01/17	S	U					×	×			
Image - <td>BD5/230117</td> <td></td> <td>6</td> <td>23/01/17</td> <td>S</td> <td>ს</td> <td></td> <td></td> <td></td> <td></td> <td>×</td> <td>×</td> <td></td> <td></td> <td></td>	BD5/230117		6	23/01/17	S	ს					×	×			
met -	TripuSpike	1											8		
mg/kg mg/kg mg/kg mg/kg ractical quantitation limit. If none given, default to Laboratory Method Detection Limit Lab Report/Refe o Analyse: 8HM unless specified here: Lab Report/Refe mber of samples in container: Relinquished by: Transported to laboratory by: sults to: Douglas Partners Pty Ltd Address	TripiBlank	-		-											
ractical quantitation limit. If none given, default to Laboratory Method Detection Limit Lab Report/Refe Analyse: 8HM unless specified here: Relinquished by: Transported to laboratory by: sults to: Douglas Partners Pty Ltd Address	PQL (S) mg/kg											1	ANZECC	PQLs re	q'd for all water analytes
o Analyse: 8HM unless specified here: Relinquished by: Transported to laboratory by: sults to: Douglas Partners Pty Ltd Address	PQL = practical	quantitatio	on limit.	If none give	en, default t	o Laborator	/ Method Dete	ction Limit			d de l	nort/Daf	Nonce No		
mber of samples in container: Relinquished by: Transported to laboratory by: sults to: Douglas Partners Pty Ltd Address	Metals to Analy	se: 8HM ur	less spe	cified here								hounda			
sults to: Douglas Partners Pty Ltd Address	Total number o	f samples i	n contain	ler:			Iquished by:		Transpo	orted to la	boratory	by:			
	Send Results to		C	Aurilae Part	nore Dtv I t										L

.

Page 2 of 3

FPM - ENVID/Form COC 02

Rev4/October2016

Project Name: Project Manager: Emails: Date Required:	85600.00	0.00			Suburb:		Casula	1.		To:	Envi	Envirolab Services	vices	
Project Manager: Emails: Date Required:	Casula	la			Order Number	lumber								
Emails: Date Required:	David	David Holden			Sampler:					Attn:	Ailee	Aileen Hie		
Date Required:	david	david.holden@douglaspartners.com.au chris.bagia@douglaspartners.com.au	uglasparti	ners.com.au	chris.ba	gia@dou	glaspartne	ers.com.a	IU	Phone:				
	Same day	e day 🛛	24 hours	□ 48 hc	48 hours	72 hours	l S	Standard		Email:		Ahie@envirolab.com.au	ab.com.al	1
Prior Storage: Esky	Fridge	e 🛛 Shelved	pe		Do samp	Do samples contain 'potential' HBM?	'potential'	1	Yes 🛛	No 🛛 ((If YES, ther	handle, trai	nsport and s	(If YES, then handle, transport and store in accordance with FPM HAZID)
цţ		1 A	Sample Type	Container Type				1.2	Analytes					
Sample Dep	D b] pnilqms2	S - soil W - Water	d/Đ	в8 odmoЭ	s£ odmoJ	c odmoJ	СЕС	Hq	YvsəH Metals	НАЯ	ХЭТВ]l sotsədzA	Notes/preservation
BH9/A1 20 0.01 - 0.02	248	23/01/17	ACM	Ч									×	
							2							
A state of the sta														
PQL (S) mg/kg	See See											ANZEC	C PQLs r	ANZECC PQLs req'd for all water analytes
PQL = practical quantitation limit.	n limit.	If none given, default to Laboratory Method Detection Limit	n, default	to Laborator	y Method	Detectior	n Limit			Lab Re	enort/Ref	Lab Report/Reference No:	.0	
Metals to Analyse: 8HM unless specified here:	less spe	cified here:					f		1 1 1 1 1					
Total number of samples in container.	Contail	Douales Dartners Dtv I td	are Dhult	F	Keiinquisnea by: Address	:ca		Iranspo		I ransported to laboratory by:	:An	Dhone.		Fav.
Signad:				ioto	N. 17	VV0 C	2107				Date & Time.		1.20	1. 1. C

Page 3 of 3

FPM - ENVID/Form COC 02

Rev4/October2016

email: sydney@envirolab.com.au envirolab.com.au

Envirolab Services Pty Ltd - Sydney | ABN 37 112 535 645

160839-A

Douglas Partners Pty Ltd	
96 Hermitage Rd	
West Ryde	
NSW 2114	
Attention: David Holden	
Sample log in details:	
Your Reference:	85600.00, Casula
No. of samples:	Additional Testing on 4 Soils
Date samples received / completed instructions received	25/01/17 / 03/02/17

CERTIFICATE OF ANALYSIS

Analysis Details:

Client:

Please refer to the following pages for results, methodology summary and quality control data. Samples were analysed as received from the client. Results relate specifically to the samples as received. Results are reported on a dry weight basis for solids and on an as received basis for other matrices. *Please refer to the last page of this report for any comments relating to the results.*

Report Details:

 Date results requested by: / Issue Date:
 10/02/17
 / 8/02/17

 Date of Preliminary Report:
 Not Issued

 NATA accreditation number 2901. This document shall not be reproduced except in full.

 Accredited for compliance with ISO/IEC 17025 - Testing

 Tests not covered by NATA are denoted with *.

Results Approved By:

David Springer General Manager

160839-A R 00

Metals in TCLP USEPA1311					
Our Reference:	UNITS	160839-A-1	160839-A-5	160839-A-7	160839-A-14
Your Reference		BH1	BH4	BH5	BH10
	-	<u>.</u>	<u>.</u>	<u>.</u>	0.00.0.4
Depth		0.1	0.1	0.1	0.02-0.1
Date Sampled		24/01/2017	23/01/2017	24/01/2017	23/01/2017
Type of sample		Soil	Soil	Soil	Soil
Date extracted	-	07/02/2017	07/02/2017	07/02/2017	07/02/2017
Date analysed	-	07/02/2017	07/02/2017	07/02/2017	07/02/2017
pH of soil for fluid# determ.	pH units	5.6	5.7	6.1	6.1
pH of soil TCLP (after HCI)	pH units	1.5	1.6	1.6	1.6
Extraction fluid used	-	1	1	1	1
pH of final Leachate	pH units	4.9	4.9	4.9	4.9
Lead in TCLP	mg/L	<0.03	0.04	<0.03	0.04

MethodID	MethodologySummary
Inorg-004	Toxicity Characteristic Leaching Procedure (TCLP) using in house method INORG-004.
EXTRACT.7	Toxicity Characteristic Leaching Procedure (TCLP) using Zero Headspace Extraction (zHE) using AS4439 and USEPA 1311.
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Metals-020 ICP- AES	Determination of various metals by ICP-AES.

		Clie	nt Referenc	e: 8	5600.00, Cas	ula		
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Metals in TCLP USEPA1311						Base II Duplicate II % RPD		
Date extracted	-			07/02/2 017	[NT]	[NT]	LCS-W1	07/02/2017
Date analysed	-			07/02/2 017	[NT]	[NT]	LCS-W1	07/02/2017
Lead in TCLP	mg/L	0.03	Metals-020 ICP-AES	<0.03	[NT]	[NT]	LCS-W1	99%

Report Comments:

Asbestos ID was analysed by Approved Identifier: Asbestos ID was authorised by Approved Signatory: Not applicable for this job Not applicable for this job

INS: Insufficient sample for this test NR: Test not required <: Less than PQL: Practical Quantitation Limit RPD: Relative Percent Difference >: Greater than NT: Not tested NA: Test not required LCS: Laboratory Control Sample

Quality Control Definitions

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. **Duplicate**: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike : A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.

LCS (Laboratory Control Sample) : This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable. Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Aileen Hie

From: Sent: To: Subject:

David Holden <David.Holden@douglaspartners.com.au> Friday, 3 February 2017 7:44 AM Aileen Hie 160839 85600.00, Casula- TCLP Analysis

Envivolab Ref: 160839A

Due: 10/2/17

Std TIA.

Hi Aileen,

Could I please get the following additional TCLP analysis for Casula (85600), ELS- 160839

Sample 168039-1 (BH1/0.1)- TCLP lead Sample 160839-5 (BH4/0.1)- TCLP lead Sample 160839-7 (BH5/0.1)- TCLP lead Sample 160839-14 (BH10/0.02-0.1)- TCLP lead

Thanks

Dave

David Holden | Environmental Scientist Douglas Partners Pty Ltd | ABN 75 053 980 117 | www.douglaspartners.com.au 96 Hermitage Road West Ryde NSW 2114 | PO Box 472 West Ryde NSW 1685 P: 02 8878 0652 | F: 02 9809 4095 | M: 0414 768 997 | E: David.Holden@douglaspartners.com.au

This email is confidential. If you are not the intended recipient, please notify us immediately and be aware that any disclosure, copying, distribution or use of the contents of this information is prohibited. Please note that the company does not make any commitment through emails not confirmed by fax or letter.

From: Ken Nguyen [mailto:KNguyen@envirolab.com.au]
Sent: Thursday, 2 February 2017 6:30 PM
To: David Holden; Christopher Bagia
Subject: Results for Registration 160839 85600.00, Casula

Please refer to attached for: a copy of the Certificate of Analysis a copy of the COC an excel file containing the results

Please note that a hard copy will not be posted.

Enquiries should be made directly to: customerservice@envirolab.com.au

Regards

Envirolab Services 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 www.envirolabservices.com.au